
ST 793 Final Exam – Spring 2017

Turn off and put away all cell phones and electronic devices. You may not use a calculator. Put

your answers on the sheets of paper handed out.

1. One of the “big” ideas of the class has been to (i) assume a model in order to answer the main

scientific question using the primary part, but then (ii) worry about secondary parts of the model

when making inference via the asymptotic distributions. In the simplest setting, we have Y1, . . . , Yn

iid from some unknown density g and distribution function G. We assume a parametric family

density f(y;θ) in order to define a maximum likelihood estimator θ̂ and possibly test statistics

about θ.

a. If the true density g is not of the form f(y;θ), then the first thing to worry about is whether

θ̂ converges in probability to a meaningful parameter value, call it θ0. Give an equation to show

how this limit value is defined when g(y) 6= f(y;θ) for any θ.

b. Assuming that the limit in a. is meaningful, let us think next about estimating asymptotic

variances. We have discussed a variety of methods: estimated information matrices, estimated

M-estimation sandwich, jackknife, nonparametric bootstrap, and parametric bootstrap.

(i) Which of these methods (one or more) will in general be appropriate (consistent) only if the

parametric model is correct?

(ii) Which of the methods (one or more) will generally be appropriate if the parametric model is

correct or incorrect.

2. Suppose that Y1, . . . , Yn are iid with distribution function F . We will use two functions q1 and q2,

and assume E{q1(Y1)} = 0, Var{q1(Y1)} = σ21 < ∞, E{q2(Y1)} = µ2 6= 0, Var{q2(Y1)} = σ22 < ∞,

E{q1(Y1)q2(Y1)} = µ12, Var{q1(Y1)q2(Y1)} = σ212 <∞. Consider the following three estimators:

θ̂1 =

{
1

n

n∑
i=1

q1(Yi)

}{
1

n

n∑
i=1

q2(Yi)

}

θ̂2 =
1

n

n∑
i=1

{q1(Yi)q2(Yi)}

θ̂3 =

{
1

n

n∑
i=1

q1(Yi)

}/{
1

n

n∑
i=1

q2(Yi)

}
.

a. Prove that each estimator converges in probability and give the limit.

b. Do the following for each estimator. If θ̂i is an M-estimator, give the ψ function. If it is not an

M-estimator by itself, give a set of ψ functions that will yield the estimator.

1



3. Let X1, . . . , Xn be iid random variables, with mean µ and variance σ2 and finite 3rd central

moment |µ3| <∞. The sample 3rd moment is m3 = n−1
∑n

i=1(Xi −X)3.

a. Give the approximation by averages h function for m3.

b. The third moment skewness coefficient is Skew = m3/s
3
n, where s2n = 1

n

∑n
i=1(Xi −X)2. Give

the approximation by averages h function for Skew.

4. Five patients were available to test whether a new treatment was better than the standard

one. Three patients were randomly assigned to receive the new treatment, and the remaining two

patients received the standard treatment. The new treatent patients obtained scores of 45, 38, 52

(higher is better), and the two patients receiving the standard treatment obtained scores of 32, and

25.

a. Compute the Wilcoxon Rank Sum statistic, W = sum of the new treatment ranks, for H0 :

treatments are identical versus the new treatment is better than the standard treatment.

b. Give the permutation distribution of W under H0. (Hint: there are 10 unique splits into 2

samples.)

c. Give the permutation p-value = probability of greater than or equal to the observed W under

the permutation distribution.

5. Suppose that Y1, . . . , Yn1 are iid Poisson(λ1) and X1, . . . , Xn2 are iid Poisson(λ2), H0 : λ1 = λ2

versus Ha : λ1 6= λ2, and the samples are independent. The Wald test statistic is TW = (Y −
X)2/

(
Y /n1 +X/n2

)
.

a. Instead of a Poisson distribution, suppose that the Y sample is from a distribution with mean

λ1 and variance σ21, and the X sample is from a distribution with mean λ2 and variance σ22. Under

H0 : λ1 = λ2, and assuming for simplicity that n1 = n2 = n, prove that TW

d−→ c1Z
2, where Z is

a standard normal random variable, and give the constant c1. Use basic theorems from the large

sample Chapter 5; do not use theorems from Ch. 8.

b. It takes some work to derive TGW; instead just try and guess what the generalized Wald statistic

TGW would be for this situation by thinking about the obvious nonparametric estimator for

Var(Y −X).

2



6. A small subset of a table from a Monte Carlo study might look like the following:

Sample size nMSE(θ̂1) nMSE(θ̂2) MSE(θ̂1)/MSE(θ̂2)

n=10 0.49 0.56 0.88

n=20 0.47 0.55 0.85

n=50 0.46 0.53 0.87

These estimates were calculated from N = 1, 000 Monte Carlo samples. For each sample size

n, picture 1,000 independent rows of data. In each row we have the basic estimators θ̂1 and θ̂2

calculated from one Monte Carlo sample. Note that the two columns of data are correlated because

θ̂1 and θ̂2 in a given row are calculated on the same generated data set. Each entry in the second

column above is the average of N values of (θ̂1 − θ)2 times n, where θ is the known true value.

Each entry in the third column above is the average of N values of (θ̂2 − θ)2 times n. The entries

in column four are just the ratios of the entries in column 2 and column 3.

A good table should provide some idea of the standard errors (estimated standard deviations) of

the entries given in the table, perhaps in the caption or in a footnote. I like to put a final row in

the table with some summary of the standard errors for the entries such as the maximum standard

error for each column’s entries or the average standard error. In order to compute this summary,

the researcher needs a standard error for each entry. There would be 9 such standard errors for the

above table.

Give an expression for the standard error of each different type of estimate. That is, give an ex-

pression for computing a standard error for each entry in column 2 (no need do it for column 3

since it is similar), and a second expression for those in column 4. Note, although in practice I

like to suggest the use of jackknife or bootstrap standard errors, for this question I want explicit

expressions based on exact or asymptotic variances. (If you use M -estimation or Delta methods,

you can just leave the expressions without multiplying them together.)
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Theorem 5.19 (Delta Method - Real-Valued Function of a Vector) Suppose that θ̂ is

ANk(θ, b2nΣ) with bn → 0 and that g is a real-valued function with partial derivatives existing in a

neighborhood of θ and continuous at θ with g′(θ) = ∂g(θ)/∂θ not identically zero. Then as n→∞

g(θ̂) is AN
[
g(θ), b2ng

′(θ)Σg′(θ)T
]
.

Theorem 5.27. For an iid sample X1, . . . , Xn, suppose that each component of θ̂ has the approx-

imation by averages representation given by

θ̂j − θj =
1

n

n∑
i=1

hj(Xi) +Rnj , j = 1, . . . , k, (1)

where
√
nRnj

p−→ 0 as n → ∞, E{hj(X1)} = 0, and Var{hj(X1)} is finite, j = 1, . . . , k. Also

assume that g is a real-valued function with partial derivatives existing in a neighborhood of the

true value θ and continuous at θ. Then

g(θ̂)− g(θ) =
1

n

n∑
i=1

 k∑
j=1

g′j(θ)hj(Xi)

+Rn, (2)

where
√
nRn

p−→ 0 as n→∞.

Theorem 5.28. For an iid sample X1, . . . , Xn, suppose that each component of θ̂ has the approx-

imation by averages representation given by

θ̂j − θj =
1

n

n∑
i=1

hj(Xi) +Rnj , j = 1, . . . , b, (3)

where
√
nRnj

p−→ 0 as n → ∞, E{hj(X1)} = 0, and Var{hj(X1)} is finite, j = 1, . . . , b. Also

assume that the real-valued function q(Xi,θ) has two partial derivatives with respect to θ, and

1. Var{q(X1,θ)} and E{q′(X1,θ)} are finite;

2. there exists a function M(x) such that for all θ∗ in a neighborhood of the true value θ and

all j, k ∈ {1, . . . , b}, |q′′(x,θ∗)jk| ≤M(x), where E{M(X1)} <∞.

Then,

1

n

n∑
i=1

q(Xi, θ̂)− E{q(X1,θ)} =
1

n

n∑
i=1

hT(Xi) +Rn,

where

hT(Xi) = q(Xi,θ)− E{q(X1,θ)}+
[
E{q′(X1,θ)}

]
h(Xi),

and
√
nRn

p−→ 0 as n→∞.
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