ST793 Midterm 1

ID:	

Name: _____

Instructions:

- Read each question carefully.
- Show all work to receive full credit.
- Make all work legible.

Honor Pledge:

I certify that I have not received or given unauthorized aid in taking this exam.

Signed: _____

1. (30 points) Denote by T survival time, and consider two independent samples of survival times: $T_{11}, \ldots, T_{1n_1} \stackrel{IID}{\sim} Exponential(\lambda_1)$ and $T_{21}, \ldots, T_{2n_2} \stackrel{IID}{\sim} Exponential(\lambda_2)$, where $T \sim Exponential(\lambda)$ denotes the exponential distribution with rate λ which has distribution function equal to $P(T \leq t) = 1 - \exp(-\lambda t)$. Suppose that we do not observe T_{ij} but instead observe (δ_{ij}, U_{ij}) for i = 1, 2 and $j = 1, \ldots, n_i$ where

$$U_{ij} = \min(T_{ij}, C_i)$$
$$\delta_{ij} = 1(T_{ij} \le C_i)$$

and C_i is the fixed "potential censoring time" for items in the *i*th group, in the sense that we have a censored observation at time u if $C_i = u$ and $T_{ij} > u$, where i = 1, 2. Assume that the pairs (δ_{ij}, U_{ij}) are independent and assume non-informative censoring; that is C_i and T_{ij} are independent.

(a) (5 points) Construct the likelihood function corresponding to a generic sample.

(b) (5 points) Construct the score vector.

(c) (5 points) Find the MLE for λ_1 and λ_2 .

(d) $(5 \ points)$ Calculate the total Fisher Information matrix.

(e) (5 points) Derive the Wald test statistic (T_W) for testing the null hypothesis H_0 : $\lambda_1 = \lambda_2$ versus H_a : $\lambda_1 \neq \lambda_2$.

(f) (5 points) Specify the asymptotic null distribution of T_W .

- 2. (30 points) Let $Y_{11}, \ldots, Y_{1n_1} \stackrel{IID}{\sim} Bernoulli(p_1)$ and $Y_{21}, \ldots, Y_{2n_2} \stackrel{IID}{\sim} Bernoulli(p_2)$ two independent samples, where $p_1, p_2 \in (0, 1)$ are unknown parameters.
 - (a) (5 points) Construct the log-likelihood function corresponding to a generic sample.

(b) (5 points) Construct the score vector.

(c) (7 points) Calculate the total Fisher information matrix.

(d) (7 points) Derive the score test statistic, (T_S) for testing the null hypothesis $H_0: p_1 = p_2 = 1/2$ versus the alternative $H_a: p_1 \neq 1/2$ or $p_2 \neq 1/2$.

(e) (6 points) Specify the asymptotic null distribution of T_S .

3. (25 points) Let $Y_1, \ldots, Y_n \stackrel{IID}{\sim} Exponential$ distribution with location ϕ and scale λ , which has density function given by

$$f(y; \phi, \lambda) = \lambda^{-1} \exp\{-(y-\phi)/\lambda\} \qquad y \ge \phi$$

where $\phi \geq 0$ and $\lambda > 0$.

(a) (10 points) Find the MLE for ϕ , $\hat{\phi}_{MLE}$, and the MLE for λ , $\hat{\lambda}_{MLE}$.

(b) (8 points) Give the asymptotic distributions of the $\hat{\phi}_{MLE}$ and $\hat{\lambda}_{MLE}$ respectively. Make sure you state all the results used in your derivations.

(c) (7 points) Give an appropriate asymptotic mean $\boldsymbol{\mu}_n$ and asymptotic variance Σ_n such that we can write that $(\hat{\phi}_{MLE}, \hat{\lambda}_{MLE})^T \sim AN_2(\boldsymbol{\mu}_n, \Sigma_n)$.

4. (5 points) Let Y_1, \ldots, Y_n be a sequence of independent normally distributed variables such that Y_1, \ldots, Y_{ϕ} have mean μ and variance σ_0^2 , while $Y_{\phi+1}, \ldots, Y_n$ have mean $\mu+\beta$ and variance 1. Here μ , β , ϕ are unknown parameters with $\mu \in \mathbb{R}$, $\beta \neq 0$, and $\phi \in \{1, \ldots, n\}$. Hence there is a change point ϕ such that the mean of all Y_j with $j > \phi$ is "increased" by β if $\phi < n$. Consider a test of hypothesis that there is no change $H_0: \phi = n$ versus the alternative that there is a change, $H_a: \phi < n$.

There are several types of non-regularity exhibited here. Name **two reasons** for which the standard asymptotic results we studied may not apply here.

5. (a) (5 points) Suppose that $\mathbf{X}_n \to_d \mathbf{X}$ and $\mathbf{Y}_n \to_d \mathbf{X}$. The notation \to_d denotes convergence in distribution and \mathbf{X} is a non-trivial distribution. Does it mean that $\mathbf{X}_n - \mathbf{Y}_n \to_d \mathbf{0}$? Circle Yes / No. Explain your choice.

(b) (5 points) Let $Y_1, \ldots, Y_n \stackrel{IID}{\sim}$ from some distribution $F(\cdot, \boldsymbol{\theta})$ that satisfies the regularity assumptions. Let $S(\boldsymbol{\theta}, \boldsymbol{Y})$ be the score vector, where $\boldsymbol{Y} = (Y_1, \ldots, Y_n)^T$. The score vector is asymptotically multivariate normal. Specify the asymptotic mean and the asymptotic variance of $S(\boldsymbol{\theta}, \boldsymbol{Y})$.