ST 793 : Solution of Homework-2

Salil Koner
September 2019

1

1.1 Problem 2.34

(a) We have given that
Luoy— L[ 1 0423
o) =52 | ~0423 1.824

o2

We know that the asymptotic covariance matrix of MLE based on a random sample of size n is given by

Cov (.6) = L [ (1.0}~ o[ 1 —0423]7" _ o®[1.1088 0.2571

Vo) = Bl = 0423 1824 | T T [0.2571 0.6079
In homework-1, we obtained the estimate of (u,0) as i = 4395.145,6 = 1882.495. So, an estimate of the
asymptotic covariance of (fi, ) is given by

Cov (.6) = & {

_ 6% [1.1088 0.2571} B [112,263.82 26,034.87}
== —

0.2571 0.6079 61, 548.15

(b) Estimate of the median of largest flow rate in 100 years is

Q = 1882.495 [ log, (—log, (0.993))] + 4395.145 = 13,729.19

Because,

Q= (1 —log, (—log, (0.993))) (Z) = (1 4.9583) (Z)

(¢) An estimate for the asymptotic variance of Q is

Var(Q) = (1 4.9583) Cov (ji,6) (1 4.9583) "

112,263.82  26,034.87

= (1 4.9583) [ 61,548.15

} (1 4.9583)"

= 1,883,609

1.2 Problem 2.49

(a) Noticing that (Y;, Z;);, is the complete data in this situation, the complete data likelihood function is given
by

Le(\pl (Vi Z0)1sy) = Ty f (Y, Zi|A, p)
=10y [pfr (V)7 [(1—p)fa (Vi s M) 2

S Zi(] = p)nSim Zi-A I (120 \ T, iz L



So, the complete data log-likelihood function is given by

Le (Nl (Yi, Zi)iy) = <ZZ>10gep+<n—ZZz>loge(1— —(n—Z%)A

=1 =1 i=1

(ZY >loge)\ ZlogeY')(l—Z)

=1

Taking conditional expectation of . (A, p| (Y;, Z;)1_,) given (Y;);—, , A", p”, we get

Q (}\,pp\u’pu) =E [EC (Aap) | (Y;)Z;l 7)\y’py}

= <ZE(Z¢Y1)> log, p + (n— ZE(ZAY») log.(1—p) — (n— ZE(ZAY») A

i=1

<ZY (1 -E(Z]Y3) )) log. A — anloge(Yi!) (1-E(Zi|Y3)

i=1

= <Zw;’> log, p+ <n—Zw;’> log, (1 —p) — <n—2w;’> A

i=1 i=1

<ZY (1—wy) >loge)\ z:loge D (1 —wy)

1=1
(b) Differentiating @ (A, p|A”, p”) with respect to A and p we get,
oQ - 1 . 1 a1
= — = wy | -—[n-— wy | —— = p' == w/ 1

and

R ORI PRt =

To make sure the maximization, we need to compute the Hessian and check whether it is negative definite at
(, A) = (P A ).
Notice that,

- 1 - 1 n?
== (2w g — (2w =N 7y <0
=t (Z; ) (p+1)? < ; ) (L-pt)? (T wy) (=X w))

because, w! is conditional expectation of a random variable (Z;) that lies between 0 and 1, which implies,
0<wy<1lforali=1,2...,n and

2°Q
op?

azQ - v 1 v
a)\Q)\_)\qul(ZYi(lwi))wSO aSYiZOandogwigl
and as the likelihood is completely separable with respect to A and p,
0%Q _
IpOX

This implies that the Hessian in negative definite and the update of p**! and A“*! are as in and
respectively.



1.3 Problem 2.51

(a) Since we only observed |Y;|,i = ¢+ 1,...,n, to obtain the observed the data likelihood, we need to find the
distribution of |Y'| when Y ~ Normal(u, 02)

After differentiating with respect to y, we get the density of |Y| is given by
1 Y — Y+
it Olao?) = 20 (22 ) o+ 2o (5] pecawse o) = o(-0) V4]

where ¢(z) = \/% exp (—12—2) is the density of standard normal distribution. If Y; and Y; are independently
distributed as Y; and |Yj|. So, the observed data likelihood is given by

L (.ua 02|Y17Y27 s 7Yq7 |Yq+1| Yt |Y7l|) = H?:lfyi (%)H?:qﬂflm(yz’)
I (yi—p
=117, <a¢ <0>> I(y; €R) x

1 i
(o (25) - (22

Zi:{1 if Y, >0

>)I(yz’ > 0)

(b) If Z; = 2I(Y; > 0) — 1, then

-1 if v;<0
This implies that Z; carries the sign of Y; and P (ZZ2 = 1) =1foralli=(¢g+1),...,n Thus,
Y =1Yi| Z; Vi=q+1,...,n
Thus, if we would have the information on Z;,i = ¢ + 1,...,n, then the complete data would have been

available to us. So, considering Y1,Ys,..., Y, |Yyt1l,. .., |Yal, Zg+1, Zg+2, - - - » Zn as our complete data, the
complete data likelihood is given by

( |{Y}z 17{|Y‘}7, q+17{Zi};L:q+1) :H;L:Ifyi(ylhjﬂoj)

1 1
= (2m0?) 2exp( 2—2 )exp ~5.3 Z (1Yil Zi

1=q+1

Complete data log-likelihood is given by

n

1 q
e (1.0%) = =5 (log, 270”) = 5 | S (Vi =+ X (¥il Zi— )’

i=1 i=q+1

i=1 i=1

— p)?

1 q q n n
=—g(10g627r<72)—ﬁ (ZYf—?MZYHrun) + | Y Wiz -2u > Vil Zi+ (n - g’

i=q+1 i=q+1

q n
% Yf—QuZYi—i—n/f—Q,u Z |Yi| Z; [because P (Z7 =1) = 1]
i=1 i=1 i=q+1

= —g (loge 27ra2) -

~



(c) Because, Z; = 2I(Y; > 0) — 1, E(Z;]|Y;], i, 0) = 2w; (@, 0) — 1. Then the E-step is given by

(d)

Q (1, 0%|p”,0") = B (Le (1.0%) Y}y AIYil} g, 17 0”)

n 1 i 4 " v
—5 (log, 0 +log, 2m) — o5 | D V2 =2 ) Vit np® —2u Y Vil E(Zi|[Yi], 4", 0")

i=1 i=1 i=q+1
(logea +10ge27r ZY2—2MZY—|—7W — 21 Z [Y:| Qw; (u”,0") — 1)
i=q+1
Differentiating @ (M, |, U”) with respect to p we get,
o0Q (u,az\u”,a”) 1 1 - v v
EW =792 *2ZYi+2nM*QZ Yi| Qw; (”,0")=1) | =0

i=1 i=q+1

This gives the update formula for p as

n

q
SVt Y 1Yl Quwi (i0") -
=1

i=q+1

To make sure that we reach towards the maximizer, the second derivative,

82 2|,,v v
Q (u, 0?|p”, 0¥) _ ",
0% 202

So, the update formula for p is as in (3)).
Note that, by Bayes theorem,

)

fivi) (wilYi > 0)P(Y; > 0)

wi (p,0) = P(Y; > 0[Y;| =) =

fivi (wilYi > 0)P(Y; > 0) + fiy, (vi]Yi < 0)P(Y; <0)

fivi (wilYs > 0)® (&)

T v @il > 0@ (B) + fiy (wilYs < 0)® (<2

Now, CDF of |Y;]|Y; > 0 is

0
FiywlYi > 0) = po<vicy) _ 2(25#)-2(-%)
P(Y;>0) @(%
So, the density of |¥;||Y; > 0 is
1 —
1o (u)
Sy WlYs > 0) = S—=2=1(y > 0)
®(7)
Similarly, we can show that the density of |¥;||Y; <0 is
1 (ytn
¢ (24)
Sy (WlY: <0) = 51y = 0)
®(-5)
Putting (5) and (6) in (4) we get,
1¢ (yi—u)

wi(u,o): Lo (4ot) 4 Lo (witn)

2uy: \\
= <1+exp (— 512%))

which is the simplified expression for w; (i, o).

if y<O
if y>0



1.4 Problem 2.54

(a) Since, Y;’s are iid, then the chance of Y; lying in any of the intervals is same for all Y; and they are independent.
So, this fits an appropriate set-up of multinomial distribution with

pi=PM €lai-1,a;)) = Fla;) = Flai—1) i=1,2....k

Assuming that the support of the distribution of Y; is [ag, ai), note that, Zle p; = 1. Then, Ny, Na, ..., Ny
follows multinomial (n, p1,pa2, ..., pr). As our only observed data is Ny, Na,..., N, the observed data likeli-
hood is given by

n! N1 No Ny, . k .
T e ity N,=n
L(plaan"'apk|N1aN27~"7l‘k) = Nl!N2!m,Nk!p1 P2 ’pk Zl—.l '
0 otherwise

(b) Our complete data here is Y7,Ya,...,Y, and they are iid with density f(y|f). So, the complete data log-
likelihood is given by

Ce(Oly1, Y2, - yn) =1log, Le(0]Y1, Y2, ..., Yy) =1log, I, fy, (yil0) = ) _log, fv, (il6)

i=1
0 lfy < a;—1
P <yY1 €laj—1,a:)) = % a1 <y<a
1 ify>a;
0 if Yy < aj—1

Foly)=Fo(ai_1)
Fo(ai)—Fp(ai—1)

1 1fy2a1

ifa;—1 <y <ay

where Fyp(z) = ffoo f(y;0)dy is the CDF of Y;. Differentiating the above CDF with respect to y, we get the
density of Y7 given Y7 € [a;—1,a;) as

fvi (W1 € [aizn,a0)) = Fg(ai)f—g(lziz)(ainl(ai_l <y<a))

2

The log-likelihood function of this location-scale family based on a single observation is given by

l(p,0;y) = —log, o +log, fo (T)

This implies,

o 1 f3(%=H) o 1

@__Ufo (u) o 9

[ea

This implies,
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(5 ) - [ () (52)on (552 [ [ o0 (52

]"o(ff)d?ﬂJr/Oo ifo( )d ]

x)dx + — / folz ] [provided this interchange is valid for f]

f()dx+%/ 11

& [ o

The information matrix is given by
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Notice, that, if the base density fo(z) is symmetric about 0, then fo(z) = fo(—z), then fy is an even function,
which means f& is an odd function. This implies, the integrand in the off-diagonal element of I(u, o), g(z) =

[ fo(»L):| fo(z) is an odd function in z, resulting [~ g(x)dz = 0. Then, the information matrix would be
diagonal. Otherwise, for general function fy, the information matrix is a dense matrix.
Thus, we can say that if the base density is symmetric then there is no asymptotic variance inflation for

estimating p when o is unknown. Otherwise, the variance would be inflated if we want to estimate y assuming o
unknown compared to the case when o is known.



	
	Problem 2.34
	Problem 2.49
	Problem 2.51
	Problem 2.54

	

