ST793 notes: Ch 9. Monte Carlo Study

1. Introduction Monte Carlo methods

The name Monte Carlo was first used in early-mid 1940’s by scientists (most important ones
are Stanislaw Ulam and John von Neumann) at Los Alamos National Lab, while working on
nuclear weapons projects. An early variant of the technique dates since 1930’s and is related
to an unpublished work of the physicist Enrico Fermi (the creator of the world’s first nuclear
reactor). His work was later referred to as Monte Carlo calculations. The development of
modern digital computers played a key role in the advancement of the methods.

Monte Carlo was used to describe a class of mathematical methods that allows to account for
undertainty in quantitative analysis and decision making, as well as for numerical integration.
Ulam described how Monte Carlo method can be used to estimate the chance of success in
playing the card game solitaire: program a computer to randomize lists representing the 52
cards of a deck, prepare lists representing the different piles, and then simulate the playing of
the game to completion. The computer gambling can be viewed as a faithful simulation of
the real random process, namely, the card shuffling. This approach is an easy alternative to
the often tedious way of mathematical calculation of such success probability, even in cases
when this is based on elementary probability theory.

Why the name Monte Carlo?

At the time the method was developed, it was required to keep it secret; ‘Monte Carlo’ was
given as a code name. The name was suggested by Nicholas Metropolis (a colleague of von
Neumann and Ulam) based on the relation between randomness and gambling, and the
connection to the Monte Carlo Casino in Monaco, where Ulam’s uncle would borrow money
from relatives to gamble.

What do we use Monte Carlo methods for?
Monte Carlo methods are used to:
» estimate the sampling distribution of an estimator
» estimate the mean and variance of an estimator
« estimate the expected length and actual coverage probability of a confidence interval
« estimate the percentiles of a test statistic
» estimate the percentiles of a non-standard limiting distribution

While Monte Carlo estimation plays a huge role in Bayesian analysis, in how it is used to
estimate posterior distribution in a Bayesian framework, we will not discuss this aspect in
this course.



In this chapter we discuss the following:
1 Examples of Monte Carlo studies
2 Principles of Monte Carlo studies
3 Importance of sample size in Monte Carlo studies
4 Analysis. Presenting the results.

This allows us to grasp what Monte Carlo experiment is and how to use it in our research. For
a comprehensive study on this topic, see DP Kroese, T Talmare, ZI Botev (2011) “Handbook
of Monte Carlo Methods”. Other books on this topic: MH Kalos and PA Whitlock (2008),
“Monte Carlo Methods”; RY Rubinstein and DP Kroese (2017) “Simulation and the Monte
Carlo Method” (Wiley Series in Probability and Statistics)

2. Examples

a. Mean estimator

{Y1,....Yut~ fly) and T =T(Y1,...,Y,) =>1, Yi/n

So far: If n is large and f is well behaved (has finite first two moments) then
L,
T~ AN(/'L’ —0 )
n

where p and o2 are the mean and variance of f.

Interest: Performance of T'(Y;,...,Y,,) for various sample sizes. How is this affected by the
underlying distribution?

Approach: Assess performance for increasing sample sizes (say n = 30, n = 100, n = 1000;
WHY?) and different underlying distributions f (what kind? WHY?) by using a Monte Carlo
study.

Set underlying distribution, say N(0,1), and sample size n, say n = 30. Then:
- generate {yi,...,y30} from N(0,1)
- calculate t = T'(y1, ..., Ys0)

Repeat these 2 steps for a large number of times, denote it N. The values of T" are

{t1,...,tn}
The distribution of the estimator "= T'(Y3,...,Y,) based on a sample of size n is approxi-
mated by the empirical distribution of {¢1,...,¢x}, when data are drawn from f.
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In class: Think of other measures you can use to evaluate the performance of the estimator
T in estimating the parameter u.

b. Confidence interval

Focus on: confidence interval for some parameter, say 6 of an underlying distribution f.
Suppose the (1 — a)% confidence interval has lower and upper bounds Lo = L(Y3,...,Y,)
and Up =U(Y3,...,Y,), using a sample {Y7,..., Y, }.

So far: if the sample size n is large, and the underlying distribution f is well behaved then

Pr(0 e (Lo,Up))~1—«

Interest: Performance of the confidence interval method for various sample sizes, when data
come form different distributions.

Approach: Assess performance of the method for increasing sample sizes (say n = 30, n = 100,
n = 1000; WHY?) and different underlying distributions f (what kind? WHY?) by using a
Monte Carlo study.

Fix confidence level (say 95%). Set underlying distribution, say N (0, 1), and sample size n,
say n = 30. Then:

- generate {yi,...,yso} from N (0, 1);
- calculate lo = L(y1,...,y30) and up = U(y1, .- -,Y30);
- define § = 1 if 6 € (lo,up) and § = 0 otherwise.

Repeat these 3 steps for a large number of times, denote it N. Calculate the actual coverage
(AC)) probability of the 95% confidence interval method by averaging all the - values
obtained:

N
AC =Y 6,/N

b=1

In class: What other measure/s could you use to evaluate the performance of this confidence
interval construction?



c. Comparison among multiple estimators

Suppose that we are interested in estimating the location of a distribution, using a sample
of size n. Consider three different estimators for location: sample mean, trimmed mean
and sample median. The material that we studied so far is informative in that if the
distribution is well behaved then we know what the asymptotic properties of these estimators
are (i.e. consistency and distribution when the sample size n is very large.)

In practice, n is finite! How do we know if for the n at hand, the distribution of the estimator
is approximated well by the asymptotic distribution.

We will use Monte Carlo simulation to get a sense of the distribution of these estimators for
various sample sizes.

Setting: Suppose Yi,..., Y, ~ f(y) where f(y) is some well behaved density function and n
is the sample size. The estimators of interest are:

- Yi+...+Y,
n =Y = nt...+r

B n
T, =Y, = trim 20% from each end of the ordered sample and average the remaining data
Ty =Y = sample median, previously denoted as 7o

Clearly Ty, T3, T5 are random (they are functions of the random Y;). Their randomness is
derermined by the randomness of Y;’s. Thus to get a sense of their distribution, we draw
many samples {yi,...,y,} from the underlying distribution f(-) and for each such sample,
we calculate the estimators value, say t; (corresponding to the estimator 77). Then the
empirican distribution of all the ¢;’s

We use Monte Carlo to generate many pseudo-random datasets Y7,...,Y, from f(y), and
for each such dataset, we calculate the three statistics. The distribution of T} across many
datasets is called the sampling distribution of 77. In the following we will compare the
sampling distribution of the there statistics. Additionally we will assess

o the bias of the estimators in estimating the true mean

o the variance of the estimators ( i.e. the standard deviation of the sampling distribution)
We are interested in how the distribution is affected by the following factors

o sample size n. Consider n = 10, n = 50 and n = 100

« underlying distribution f(y): Normal(0,1), ¢5; and Laplace(0,1). Laplace density is
f(y) = (1/2) exp(=]yl)

Q: Is it worthwhile to look at other distributions in these families such as Normal(0, 3) or
Normal(1, 3) and so on? Justify your answer.

## Warning: package 'rmutil' was built under R version 3.5.2
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# fn.stats - calculates the mean/trimmed mean/med
# data - arranged n-by-N matriz;

# N= Monte Carlo size; n=sample size

fn.stats <- function(data){

mean_data <- apply(data, 2, mean)

trmean_data <- apply(data, 2, mean, trim = .2)
median_data <- apply(data, 2, median)
out=cbind(mean_data, trmean data, median_data)
out

# fn.sampl.distn - outputs data from Normal, t_5 and Laplace
# N= Monte Carlo size; n=sample size
# sets the seed of the simulation
fn.sampl.distn<- function(N, n, seed=1234){
set.seed(seed)

# Normal (0,1)

data <- matrix(rnorm(N#*n), nrow=n)
out_norm <- fn.stats(data)

#t5

data <- matrix(rt(N*n, df=5), nrow=n)
out_t5 <- fn.stats(data)

# Laplace(0,1)

data <- matrix(rlaplace(N#*n), nrow=n)
out_laplace <- fn.stats(data)

list(norm = out_norm, tb=out_t5, laplace=out_laplace )

out<- fn.sampl.distn(N=100, n=10, seed=1234)
#head (out$norm) ;



#head (out$ts);
#head (out$laplace)

# Simulation size
N<-10000

out.10<- fn.sampl.distn(N=N, n=10, seed=346)
out.50<- fn.sampl.distn(N=N, n=50, seed=346)
out.100<- fn.sampl.distn(N=N, n=100, seed=346)

Plot the sampling distribution for the three estimators in the case of Laplace

library(knitr)
library(rmutil) # required for Laplace density

x1im0<-c(-7/sqrt(50), 7/sqrt(50))

par (mfrow=c(1,3))

hist(out.50$laplace[,1], probability
main="Mean, n=50", xlab="")

hist(out.50$laplace[,2], probability = TRUE,xlim=x1im0,
main="20%Trimmed Mean, n=50", xlab="")

hist(out.50$laplace(,3], probability = TRUE, xlim=x1im0,
main="Median, n=50", xlab="")

TRUE, x1im=x1imO,
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Evaluate estimators using the bias and standard error

# true_mean -true mean for Normal, t_b5,Laplace
true_mean <- rep(0,3)

# Bias = Mean estimator - True mean

bias.10 <- sapply(out.10, function(x) apply(x, 2, mean), simplify = TRUE) - true_mean
bias.50 <-sapply(out.50, function(x) apply(x, 2, mean), simplify = TRUE) - true_mean
bias.100 <-sapply(out.100, function(x) apply(x, 2, mean), simplify = TRUE) -true_mean
rownames (bias.10)<-rownames (bias.50)<-rownames(bias.100)<- c( "mean", "trmean", "medi:



(round(bias.10 , 3)) # n=10

#i norm t5 laplace
## mean -0.003 0.008 -0.004
## trmean -0.004 0.006 -0.004
## median -0.003 0.005 -0.002

(round(bias.50 , 3)) # n=50
#it norm t5 laplace
## mean 0.000 0.000 0.002

## trmean 0.001 0.001 0.002
## median 0.002 0.001 0.003

(round(bias.100 , 3)) # n= 100

o

## norm t5 laplace
## mean 0.001 0.000 0.001
## trmean 0.001 0.001 0.001
## median 0.002 0.001  0.000

The standard error of the Monte Carlo based estimator is an estimate of its standard deviation.

se.10 <- sapply(out.10, function(x) apply(x, 2, sd), simplify = TRUE)

se.50 <- sapply(out.50, function(x) apply(x, 2, sd), simplify = TRUE)

se.100 <- sapply(out.100, function(x) apply(x, 2, sd), simplify = TRUE)

rownames (se.10)<-rownames (se.50) <-rownames (se.100)<- c( "mean", "trmean", "median")

(round(se.10*sqrt(10) , 2)) # n=10

#it norm  t5 laplace
## mean 1.00 1.31 1.42
## trmean 1.06 1.19 1.21
## median 1.17 1.27 1.21

(round(se.50*sqrt(50) , 2)) # n=50

#it norm  t5 laplace
## mean 1.00 1.30 1.39
## trmean 1.07 1.18 1.14
## median 1.23 1.31 1.09

(round(se.100*sqrt(100) , 2)) # n=100

#it norm tb laplace
## mean 1.00 1.31 1.41
## trmean 1.07 1.17 1.14
## median 1.24 1.31 1.08



3. Principles of Monte Carlo studies

In designing a Monte Carlo study it is important to use the following basic principles:

1. A Monte Carlo experiment, just like any other experiment, involves careful planning,
in addition to the carrying the experiment itself, analyzing the results and interpreting
them. In particular, consideration should be given to:

— What factors should be varied in the experiment; think of factors whose effect is
relevant to study. These factors almost always include the sample size.

— The size of the Monte Carlo simulation, which is the number of replicated datasets.
This is chosen to be large enough to ensure the desired precision, while small
enough to ensure the computations are feasible.

— What information should be saved from the experiment and how it should be
analyzed to accomplish the experiment objective.

2. Whenever possible, save the values of the statistics calculated on all the generated
datasets.

3. When coding the simulation experiment, use a low number of replicates. Increase this
number to the actual size of the Monte Carlo experiment selected, ONLY after the code
is bug-free.

4. Organize your work and document both the simmulation code and the results. This
proves extremely helpful when resuming the work after a break. Also whenever possible,
keep track of the seed used in random number generation.



4. Importance of sample size in Monte Carlo studies

Determining the sample size in Monte Carlo is not different from other sample size calculations.
Here are few examples:

e Bias estimation. Say you are interested in reporting the bias of an estimator 0 of a
true parameter value 6y. Using N Monte Carlo replicates (or simulations), the bias is

estimated as
A 1 N
BZGS(@) = — Zel — 90.
N =

In class: Suppose we have access to a guess of the variance of the estimator. Can you
think of a way to calculate the minimum Monte Carlo size N such that the precision
(i.e. standard deviation) of the bias is within 2 decimal points?

Work on the board.

o Variance estimation. In class: Suppose we have access to a guess of the variance of the
estimator. Sounds a bit weird, but let’s still play along.

In class: Can you think of a way to calculate the smallest Monte Carlo size N that
would allow to estimate the variance of your estimator with a desired precision?

Recall the sample variance of the estimator 0 is



where § = N-1'y, 0, is the sample mean. Using the asymptotic results studied earlier
in the course ...

Work on the board.

For large n, the distribution of 0 is approximately normal (kurtosis for normal=3),
implying that K urtosis(é) ~ 3; this implies further that the the sample variance is
approximately normal with mean equal to the true variance and variance equal to %ag.
As before we can now calculate the minimum Monte Carlo size N that ensures a specific

precision of the sample variance, and is based on an apriori guess for the variance.

Power estimation. Suppose we have a testing procedure described by a test statistic
T and a rejection region RR = {T > ¢}, where ¢, is a critical value such that the
corresponding to a Type I error rate of the testing procedure is a. Assuming a parameter
value in the alternative hypothesis, one estimates the power at that parameter value by
the mean rejection probability

1 N
potver = — > " 1(T; > ca)
Ni=

where T; are values of the test statistic corresponding to the ¢th generated dataset by
using the specific parameter value included in the alternative hypothesis.

Inlass: What is the minimum Monte Carlo size N such that the power curves have a
certain desired precision?

Note that the rejection indicator for some alternative, 1(7; > ¢,), follows Bernoulli
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distribution; the above estimator of the power has the mean equal to the true power
value (denoted by p) and variance equal to p(1 —p)/N - which is maximized for p = 1/2.
For p = 1/2, the variance of the estimator of the power is 1/4N. The minimum Monte
Carlo size N that ensures a certain precision in the power estimator can be easily
calculated. Let d be the desired precision; the minimum sample size N is solved from
the inequality (by rounding up):

1 1

— < d* implying that N~ —.
v s implying tha e
Confidence intervals. When constructing confidence intervals two important aspects
are: 1) the actual coverage probability of the confidence intervals and 2) the expected
length of the confidence intervals. To be specific, we consider intervals of the form

éiz;/Q\/Var(é).

In class: What is the minimum Monte Carlo size N such that the error in the coverage
probability is accurate with certain precision? Alternatively, what is the minimum
Monte Carlo size N such that the average expected length has a specified accuracy?

Work on the board.
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5. Analysis of the results

In any Monte Carlo study, whether of interest is estimation or testing, one should report a
measure of standard deviation in the results. Additionally, if one is interested in comparison
between multiple methods, one should take into account the blocking induced by simulation:
each competitive estimator is evaluated on the same generated data, hence there is dependence
among them which should be accounted for when comparing them.

A

A. Suppose you are interested in the performance of one estimator, say sample mean (6). The
quality of the variance estimator 6i2,n is important when constructing confidence intervals.

Assume that from large sample theory we have that the asymptotic distribution of 0 is
normal with some mean and variance ¢2. From the ith Monte Carlo dataset we obtain

n*

empirical-based estimates §; and 57 -
Thus based on the Monte Carlo study we can actually estimate the variance (¢2) of the
estimator # in two ways: 1) as the average of all the variance estimates 67, and 2) as the
variance of all the estimates él Let

1 ~

RN — N ZZ 0-127” .
S{-1

the numerator, in fact, estimates £ [6&], while the denominator is an unbiased estimator of

the variance of 6.

What does it mean if we observe Ry = 1.077

What does it mean if Ry = 0.837

2

nn*

o We can use this ratio quantity to assess the quality of the variance estimator, &
How?

Studying Ry we observe that it’s essentially the ratio of two average estimators and
thus it is a random quantity. To derive its distribution we need take into account

i. asymptotic distribution of the numerator
ii. asymtptotic distribution of the denominator

iii. use Delta method to derive the asymptotic distribution of the ratio Ry (with n
fixed and N — o0). In particular it’s asymptotic variance is

Cov({0 — E[0]}2,62)  Var(62)

n

2B G

n

! M{Kwtosis(é) —1-2

n
N ot

n
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For example consider a situation when Ry = 1.04 and an estimated standard error
of Ry (using empirical based estimates of the asymptotic variance) is 0.016. Thus it
implies that the variance estimator o ,, 1s slightly biased upward on average.

B. Mean Squared Error (MSE) - as a performance measure criterion. MSE is commonly
reported when estimating the performance of an estimator or comparing one or multiple
estimators as it combines measures of bias and variance. However when it comes to assessing
the variance estimation, it is recommended against it, due to the fact that it rewards
underestimation too much. And, since the variance is used to construct confidence intervals,
underestimation results in poor coverage probability of the confidence intervals. Read Ch
9.4.3. - for more discussion of this aspect.

C. Suppose you are interested in comparing two estimators. For simplicity consider the
sample mean (0;) with the trimmed mean (6,).

o Comparing the mean of two estimators should be carried out using a paired t-test

When comparing multiple estimators on the same generated datasets, it is important to
appropriately take into account the fact that the estimators are correlated. Specifically
the variance of the difference between ) and #®

Var{dV —§?}
and not Var{dM} + Var{®}. If further comparative analysis between the two
estimators is needed, a paired t-test should be used and not a two-sample t-test.
o Comparing the variance of two estimators, when the estimators are correlated.

Assume s7 y_; and s3 y_; are the variance estimates of the two estimators calculated on
the same N generated datasets. Clearly taking their ratio s7 y_,/ 537 ~N—1 could tell you
which variance is smaller. Can you imply, based on this which estimator has smaller
variance though?

The ratio s} y_,/s3 y_; is indeeed random, and in order to formally conclude which
estimator is more efficient for a given sample size n, one has to study the asymptotic
distribution of this ratio. In establishing this take into account:

i. the asymptotic distribution of each sample variance
ii. the asymptotic distribution of the joint sample variances

iii use Delta method to derive the asymptotic distribution of s7 /85y 1; its
asymptotic variance is:

1 ot 61,0
o, {Kurtoszs(@l) + Kurtosis(fs) — 2 — 2%1;2)}
N 0-1 n02n

Estimate all the quantities using the sample-based versions.
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6. Presentation of the results

When presenting the results, it is useful to remember the following principles:

o Use graphs whenever possible. It is fine to have both a graph and a table, subject to
space restrictions.

o Always give some idea of the standard error of each estimated entry in tables, and in
graphs when feasible. Preferably: report a range or average standard error in a note at
the bottom of tables and in the caption of figures.

o It is best to use at most two significant digits in table entries, and seldom are more
than three required.

o It makes little sense to include digits beyond the standard error of the entry. For
example, suppose the computer gives .04586 for an entry but the standard error of
the entry is .002. Then there is no reason to report more than three digits (in this
case.046).

One possible exception is when the difference of entries has a much smaller standard
error than the individual entry standard error.

In class exercise:

Zhang and Boos (1997) discuss new methods to handle clustered binomial data appearing in
a series of 2 x 2 tables. The details are not important here, but one of the paper’s sections
investigated confidence intervals for the common odds ratio. In a Monte Carlo study, a new
confidence interval (CU) was compared to another confidence interval based on a competitive
method (denoted CL). Table 9.4 is a portion of the first attempt at presenting the results in
a table.(Boos and Stefanski, 2013)

Which of the following 3 tables presents results more clearly and why?
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Table 9.4 Coverage and length of 95% confidence intervals for data from the beta-binomial(p)
distribution with odds ratio = 1.5

Number p=00 p=02
of strata nij,mi = 5 5-10 5-15 5 5-10 5-15
k=5 C;. Coverage 971 977 977 984 980 975
Mean Length 193 148 1.25 5.15 288 395
Cy Coverage 969 964 968 977 968 .96l
Mean Length 095 0.77 0.69 142 1.29 1.26

Table 9.5 Coverage and length of 95% confidence intervals for data from the beta-binomial(p)
distribution with odds ratio = 1.5

Number p=0.0 p=02
of strata n,~j,m,~j = 5 5-10 5-15 5 5-10 5-15
k=5 C;,  Coverage 98 98 98 98 98 98
Mean Length 1.9 1.5 1.3 52 29 4.0
Cy  Coverage 97 .96 97 98 97 96
Mean Length 1.0 0.8 0.7 14 13 1.3

Table 9.6 Coverage and length of 95% confidence intervals for data from the beta-binomial(p)
distribution with odds ratio = 1.5

Number p=09 p=02
of strata njj,mij = 35 5-10  5-15 5 5-10 5-15
k=5 Coverage C. 98 98 .98 98 .98 .98
Cy 97 .96 97 98 .97 .96
Mean Length Cp 19 1.5 1.3 52 29 4.0
Cy 1.0 08 0.7 14 1.3 1.3

Taken from Zhang and Boos (1997, p. 1193)

Figure 1: A caption
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