ST 793: Solution of Homework-4

Salil Koner

October 25, 2019

Book problems

Problem 5.27

Let Y_{1}, \ldots, Y_{n} are i.i.d with mean μ and variance σ^{2}. Define a vector valued random variable, $Z=\left(Y, Y^{2}\right)^{\top}$. Then, $Z_{1}, Z_{2}, \ldots, Z_{n}$ are i.i.d with mean $\boldsymbol{\mu}_{z}=\left(\mu, \sigma^{2}+\mu^{2}\right)^{\top}$ and covariance matrix

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\left(\begin{array}{cc}
V(Y) & \operatorname{Cov}\left(Y, Y^{2}\right) \\
\operatorname{Cov}\left(Y, Y^{2}\right) & V\left(Y^{2}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sigma^{2} & \mu_{3}^{\prime}-\mu\left(\sigma^{2}+\mu^{2}\right) \\
\mu_{3}^{\prime}-\mu\left(\sigma^{2}+\mu^{2}\right) & \mu_{4}^{\prime}-\left(\sigma^{2}+\mu^{2}\right)^{2}
\end{array}\right) \quad \text { [In terms of raw moments] } \\
& =\left(\begin{array}{cc}
\sigma^{2} & \mu_{3}+2 \mu \sigma^{2} \\
\mu_{3}+2 \mu \sigma^{2} & \mu_{4}+4 \mu_{3} \mu+4 \mu^{2} \sigma^{2}-\sigma^{4}
\end{array}\right) \quad \text { [In terms of central moments] }
\end{aligned}
$$

Then, by central limit theorem,

$$
\sqrt{n}\left[\binom{\frac{1}{n} \sum_{i=1}^{n} Y_{i}}{\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}}-\binom{\mu}{\sigma^{2}+\mu^{2}}\right] \stackrel{d}{\rightarrow} \mathrm{~N}_{2}(\mathbf{0}, \boldsymbol{\Sigma})
$$

Now, define, a vector valued function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, such that,

$$
g(\boldsymbol{\theta})=g\left(\theta_{1}, \theta_{2}\right)=\left(\theta_{1}, \sqrt{\theta_{2}-\theta_{1}^{2}}, \frac{\sqrt{\theta_{2}-\theta_{1}^{2}}}{\theta_{1}}\right)^{\top}
$$

Then, understand that,

$$
g\binom{\frac{1}{n} \sum_{i=1}^{n} Y_{i}}{\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}}=\left(\bar{Y}_{n}, s_{n}, \frac{s_{n}}{\bar{Y}_{n}}\right)^{\top}
$$

Thus, by delta method,

$$
\sqrt{n}\left[\left(\begin{array}{c}
\bar{Y}_{n} \\
s_{n} \\
\frac{s_{n}}{Y_{n}}
\end{array}\right)-\left(\begin{array}{c}
\mu \\
\sigma \\
\frac{\sigma}{\mu}
\end{array}\right)\right] \stackrel{d}{\rightarrow} \mathrm{~N}_{3}\left(\mathbf{0}, g^{\prime}\left(\boldsymbol{\mu}_{\mathbf{z}}\right) \boldsymbol{\Sigma} g^{\prime}\left(\boldsymbol{\mu}_{\mathbf{z}}\right)^{\top}\right)
$$

where,

$$
g^{\prime}(\boldsymbol{\theta})=\frac{\partial g}{\partial \boldsymbol{\theta}}=\left(\begin{array}{ccc}
1 & -\frac{\theta_{1}}{\sqrt{\theta_{2}-\theta_{1}^{2}}} & -\frac{\theta_{2}}{\theta_{1}^{2} \sqrt{\theta_{2}-\theta_{1}^{2}}} \\
0 & \frac{1}{2 \sqrt{\theta_{2}-\theta_{1}^{2}}} & \frac{1}{2 \theta_{1} \sqrt{\theta_{2}-\theta_{1}^{2}}}
\end{array}\right)^{\top}
$$

Evaluating the above at $\boldsymbol{\theta}=\left(\mu, \sigma^{2}+\mu^{2}\right)^{\top}$ we get

$$
g^{\prime}\left(\boldsymbol{\mu}_{\mathbf{z}}\right)=\left(\begin{array}{ccc}
1 & -\frac{\mu}{\sigma} & -\frac{1}{\sigma}-\frac{\sigma}{\mu^{2}} \\
0 & \frac{1}{2 \sigma} & \frac{1}{2 \mu \sigma}
\end{array}\right)^{\top}
$$

Problem 5.28

Define, a vector valued function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $g(\mathbf{x})=\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{2}\right)\right)$. Then,

$$
g^{\prime}(\mathbf{x})=\left(\begin{array}{cc}
g_{1}^{\prime}\left(x_{1}\right) & 0 \\
0 & g_{2}^{\prime}\left(x_{2}\right)
\end{array}\right)
$$

By the assumptions, $g^{\prime}(\boldsymbol{\theta}) \neq 0$ as both $g_{1}^{\prime}\left(\theta_{1}\right)$ and $g_{2}^{\prime}\left(\theta_{2}\right)$ are non-zero. Then by delta method,

$$
\sqrt{n}\left[\binom{g_{1}\left(\hat{\theta}_{1}\right)}{g_{2}\left(\hat{\theta}_{2}\right)}-\binom{g_{1}\left(\theta_{1}\right)}{g_{2}\left(\theta_{2}\right)}\right] \stackrel{d}{\rightarrow} N_{2}\left(\mathbf{0}, g^{\prime}(\boldsymbol{\theta}) \boldsymbol{\Sigma} g^{\prime}(\boldsymbol{\theta})\right)
$$

Because $g^{\prime}(\mathbf{x})$ is a diagonal matrix we can do further simplification of the asymptotic covariance matrix, which is

$$
g^{\prime}(\boldsymbol{\theta}) \boldsymbol{\Sigma} g^{\prime}(\boldsymbol{\theta})=\left(\begin{array}{cc}
\left(g_{1}^{\prime}\left(\theta_{1}\right)\right)^{2} \sigma_{11} & g_{1}^{\prime}\left(\theta_{1}\right) g_{2}^{\prime}\left(\theta_{2}\right) \sigma_{12} \\
g_{1}^{\prime}\left(\theta_{1}\right) g_{2}^{\prime}\left(\theta_{2}\right) \sigma_{12} & \left(g_{2}^{\prime}\left(\theta_{2}\right)\right)^{2} \sigma_{22}
\end{array}\right)
$$

This means that the asymptotic correlation between $g_{1}\left(\hat{\theta}_{1}\right)$ and $g_{2}\left(\hat{\theta}_{2}\right)$ is given by

$$
\begin{aligned}
r\left(\hat{g}_{1}, \hat{g}_{2}\right) & =\frac{g_{1}^{\prime}\left(\theta_{1}\right) g_{2}^{\prime}\left(\theta_{2}\right) \sigma_{12}}{\sqrt{\left(g_{1}^{\prime}\left(\theta_{1}\right)\right)^{2} \sigma_{11}\left(g_{2}^{\prime}\left(\theta_{2}\right)\right)^{2} \sigma_{22}}} \\
& =\frac{\sigma_{12}}{\sqrt{\sigma_{11} \sigma_{22}}} \quad\left[\text { because both } g_{1}^{\prime}\left(\theta_{1}\right), \quad g_{2}^{\prime}\left(\theta_{2}\right)>0 \text { as } g_{1}, g_{2}\right. \text { are increasing] } \\
& =r\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)
\end{aligned}
$$

This completes the proof.

Problem 5.39

By Theorem 5.25 of the book,

$$
\begin{aligned}
\left(\hat{\eta}_{\frac{3}{4}}-\hat{\eta}_{\frac{1}{4}}\right)-\left(\eta_{\frac{3}{4}}-\eta_{\frac{1}{4}}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(\left[\frac{\frac{3}{4}-I\left(X_{i} \leq \eta_{\frac{3}{4}}\right.}{F^{\prime}\left(\eta_{\frac{3}{4}}\right)}\right]-\left[\frac{\frac{1}{4}-I\left(X_{i} \leq \eta_{\frac{1}{4}}\right.}{F^{\prime}\left(\eta_{\frac{1}{4}}\right)}\right]\right)+R_{1 n}-R_{2 n} \\
& =\frac{1}{n} \sum_{i=1}^{n} h_{T}\left(X_{i}\right)+R_{n}
\end{aligned}
$$

where

$$
\begin{gathered}
h_{T}\left(X_{i}\right)=\left[\frac{\frac{3}{4}-I\left(X_{i} \leq \eta_{\frac{3}{4}}\right.}{F^{\prime}\left(\eta_{\frac{3}{4}}\right)}\right]-\left[\frac{\frac{1}{4}-I\left(X_{i} \leq \eta_{\frac{1}{4}}\right.}{F^{\prime}\left(\eta_{\frac{1}{4}}\right)}\right] \quad i=1,2, \ldots, n \\
R_{n}=R_{1 n}-R_{2 n} \text { and } \sqrt{n} R_{n} \rightarrow 0 \text { as } n \rightarrow \infty \text { because both } \sqrt{n} R_{1 n} \rightarrow 0 \text { and } \sqrt{n} R_{2 n} \rightarrow 0 \text { as } n \rightarrow \infty
\end{gathered}
$$

Problem 5.49

Let's denote $M(\mathbf{t})$ be the moment generating function (MGF) of a random variable. Then, $\mathbf{X}_{n} \rightarrow \mathbf{X}$ and $\mathbf{Y}_{n} \rightarrow \mathbf{Y}$ implies $M_{\mathbf{X}_{n}}(\mathbf{t}) \rightarrow M_{\mathbf{X}}(\mathbf{t})$ and $M_{\mathbf{Y}_{n}}(\mathbf{s}) \rightarrow M_{\mathbf{Y}}(\mathbf{s})$ for all (\mathbf{s}, \mathbf{t}). Then the moment generating function of $\mathbf{Z}_{n}=$ $\mathbf{X}_{n}+\mathbf{Y}_{n}$ is given by

$$
\begin{aligned}
M_{\mathbf{Z}_{n}}(\mathbf{t}, \mathbf{s}) & =\mathrm{E}\left(\exp \left(\mathbf{t}^{\prime} \mathbf{X}_{n}+\mathbf{s}^{\prime} \mathbf{Y}_{n}\right)\right) \\
& =\mathrm{E}\left(\exp \left(\mathbf{t}^{\prime} \mathbf{X}_{n}\right)\right) \mathrm{E}\left(\exp \left(\mathbf{s}^{\prime} \mathbf{Y}_{n}\right)\right) \quad\left[\mathbf{X}_{n} \text { and } \mathbf{Y}_{n} \text { are independent }\right] \\
& =M_{\mathbf{X}_{n}}(\mathbf{t}) M_{\mathbf{Y}_{n}}(\mathbf{s}) \rightarrow M_{\mathbf{X}}(\mathbf{t}) M_{\mathbf{Y}}(\mathbf{s})=\mathrm{E}\left(\exp \left(\mathbf{t}^{\prime} \mathbf{X}+\mathbf{s}^{\prime} \mathbf{Y}\right)\right)
\end{aligned}
$$

The last step follows because \mathbf{X} and \mathbf{Y} are also independent. This proves that $\mathbf{X}_{n}+\mathbf{Y}_{n}$ converges to distribution to $\mathbf{X}+\mathbf{Y}$.

Problem 5.52

$$
\begin{aligned}
v_{n, i}=\operatorname{Var}\left(\sum_{j \neq i} h_{i j} e_{j}\right) & =\sum_{j \neq i} h_{i j}^{2} \operatorname{Var}\left(e_{j}\right)=\sigma^{2} \sum_{j \neq i} h_{i j}^{2} \\
& =\sigma^{2}\left(\sum_{j=1}^{n} h_{i j}^{2}-h_{i i}^{2}\right)=\sigma^{2}\left(h_{i i}-h_{i i}^{2}\right) \quad \text { because } \mathbf{H}^{2}=\mathbf{H} \\
& =\sigma^{2} h_{i i}\left(1-h_{i i}\right)
\end{aligned}
$$

Now, notice that,

$$
\begin{aligned}
Y_{i}-\hat{Y}_{i} & =(\mathbf{Y}-\hat{\mathbf{Y}})_{i} \\
& \left.=((\mathbf{I}-\mathbf{H}) \mathbf{Y})_{i}=((\mathbf{I}-\mathbf{H}) \mathbf{e})_{i} \quad \text { [because }(\mathbf{I}-\mathbf{H}) \mathbf{X}=0\right] \\
& =e_{i}-\sum_{j=1}^{n} h_{i j} e_{j} \\
& =\left(1-h_{i i}\right) e_{i}-\sum_{j \neq i} h_{i j} e_{j}
\end{aligned}
$$

Define, $X_{n, j}=\sqrt{v_{n, i}} h_{i j} e_{j} j=1,2, \ldots, n, j \neq i$ and $\alpha_{n, i}=\max _{j \neq i}\left|h_{i j}\right|$
Then, the Lindeberg condition asks us to prove that

$$
\begin{aligned}
\epsilon_{n} & =\sum_{\substack{j=1 \\
j \neq i}}^{n} \mathrm{E}\left(X_{n, j}^{2} I\left(\left|X_{n, j}\right|>\delta\right)\right) \\
& =v_{n, i}^{-2} \sum_{\substack{j=1 \\
j \neq i}}^{n} \mathrm{E}\left(h_{i j}^{2} e_{j}^{2} I\left(\left|h_{i j} e_{j}\right|>\delta\right)\right) \\
& =v_{n, i}^{-1} \sum_{\substack{j=1 \\
j \neq i}}^{n} h_{i j}^{2} \mathrm{E}\left(e_{j}^{2} I\left(\left|e_{j}\right|>\frac{\delta}{\left|h_{i j}\right|}\right)\right) \\
& \leq v_{n, i}^{-1} \sum_{\substack{j=1 \\
j \neq i}}^{n} h_{i j}^{2} \mathrm{E}\left(e_{j}^{2} I\left(\left|e_{j}\right|>\frac{\delta}{\alpha_{n, i}}\right)\right) \\
& =v_{n, i}^{-1} \mathrm{E}\left(e_{1}^{2} I\left(\left|e_{1}\right|>\frac{\delta}{\alpha_{n, i}}\right)\right) \sum_{\substack{j=1 \\
j \neq i}}^{n} h_{i j}^{2} \\
& =\sigma^{-2} \mathrm{E}\left(e_{1}^{2} I\left(\left|e_{1}\right|>\frac{\delta}{\alpha_{n, i}}\right)\right) \rightarrow 0 \quad\left[\text { by Dominated Convergence Theorem as } \alpha_{n, i} \rightarrow 0 \text { as } n \rightarrow \infty\right]
\end{aligned}
$$

By Lindeberg Central Limit theorem,

$$
\sum_{\substack{j=1 \\ j \neq i}}^{n} X_{n, j}=\sqrt{v_{n, i}} \sum_{\substack{j=1 \\ j \neq i}}^{n} h_{i j} e_{j} \rightarrow \mathrm{~N}(0,1)
$$

Also, because, $h_{i i} \rightarrow c_{i}$,

$$
\sqrt{v_{n, i}} \rightarrow\left(c_{i}\left(1-c_{i}\right)\right)^{1 / 2}
$$

By Slutsky's theorem,

$$
\sum_{\substack{j=1 \\ j \neq i}}^{n} h_{i j} e_{j} \rightarrow \mathrm{~N}\left(0, c_{i}\left(1-c_{i}\right)\right)
$$

This completes the proof.
As an alternative approach to check the lindeberg condition we can check,

$$
\lim _{n \rightarrow \infty} \max _{j \neq i} P\left(\left|X_{n, i}\right|>\epsilon\right)=0
$$

which can be checked by applying Chebyshev's inequality because,

$$
P\left(\left|X_{n, j}\right|>\epsilon\right)<\frac{\operatorname{Var}\left(X_{n, j}\right)}{\epsilon^{2}}=\frac{v_{n, i} h_{i j}^{2} \sigma^{2}}{\epsilon^{2}}
$$

This implies,

$$
\max _{j \neq i} P\left(\left|X_{n, i}\right|>\epsilon\right)<\frac{v_{n, i} \sigma^{2}}{\epsilon^{2}} \max _{j \neq i} h_{i j}^{2} \rightarrow 0
$$

Problem 2

Because $Y_{1}, Y_{2}, \ldots, Y_{n}$ follows $N\left(0, \sigma^{2}\right), E\left(Y_{i}^{2}\right)=\sigma^{2}$ and $\operatorname{Var}\left(Y_{i}^{2}\right)=E\left(Y_{i}^{4}\right)-E^{2}\left(Y_{i}^{2}\right) .=3 \sigma^{4}-\sigma^{4}=2 \sigma^{4}$. Then, by central limit theorem,

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}-\sigma^{2}\right) \xrightarrow{d} N\left(0,2 \sigma^{4}\right)
$$

This means, $S_{n}^{2} \sim \operatorname{AN}\left(\sigma^{2}, \frac{2 \sigma^{4}}{n}\right)$.
For a function $g(x)$ such that $g^{\prime}\left(\sigma^{2}\right) \neq 0$, by delta method,

$$
\sqrt{n}\left(g\left(S_{n}^{2}\right)-g\left(\sigma^{2}\right)\right) \xrightarrow{d} N\left(0,2\left(g^{\prime}\left(\sigma^{2}\right)\right)^{2} \sigma^{4}\right)
$$

We want a g such that the asymptotic variance or standard deviation does not depend on σ^{2}, which means we want

$$
g^{\prime}\left(\sigma^{2}\right) \sigma^{2}=c \quad \text { for some constant } c>0
$$

which is equivalent to saying that g must satisfy the differential equation

$$
g^{\prime}(x)=\frac{c}{x} \quad \forall x
$$

which implies $g(x)=c \log (x)$ for some $c>0$

