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Book problems
Problem 5.27

Let Y1,...,Y, are i.i.d with mean y and variance o2. Define a vector valued random variable, Z = (Y,Y?)T. Then,
Z1,Za,. .., Zy are ii.d with mean p, = (u,0% + p2)T and covariance matrix
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Then, by central limit theorem,
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Now, define, a vector valued function ¢ : R — R3, such that,
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Evaluating the above at 6 = (u, 0% + p?



Problem 5.28
Define, a vector valued function g : R — R? such that g(x) = (g1(71), g2(x2)). Then,
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By the assumptions, ¢'(0) # 0 as both ¢1(61) and ¢5(f2) are non-zero. Then by delta method,
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Because ¢'(x) is a diagonal matrix we can do further simplification of the asymptotic covariance matrix, which is
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This completes the proof.

Problem 5.39
By Theorem 5.25 of the book,
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R, = Ry, — Ro,, and /nR,, — 0 as n — oo because both /nRy, — 0 and v/nRs, — 0 as n — o

Problem 5.49

Let’s denote M(t) be the moment generating function (MGF) of a random variable. Then, X,, - X and Y,, =Y
implies Mx, (t) = Mx(t) and My, (s) = My(s) for all (s,t). Then the moment generating function of Z, =
X, + Y, is given by

Mz, (t,s) = E (exp (t'X,, +s'Y,,))
= E (exp (t'X)) E (exp (s"Yn)) [X,, and Y,, are independent]
= MX,L (t)MYn (S) — Mx(t)My(S) =K (exp (t/X + S/Y))

The last step follows because X and Y are also independent. This proves that X,, + Y, converges to distribution
to X +Y.



Problem 5.52
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By Lindeberg Central Limit theorem,
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This completes the proof.
As an alternative approach to check the lindeberg condition we can check,
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which can be checked by applying Chebyshev’s inequality because,
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Problem 2

Because Y1, Ya,...,Y, follows N(0,02), E(Y?) = 0% and Var(Y?) = E(Y*) — E?(Y?). = 30* — 0* = 20*. Then,
by central limit theorem,
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For a function g(x) such that ¢'(c?) # 0, by delta method,
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We want a g such that the asymptotic variance or standard deviation does not depend on ¢2, which means we
want
g (0*)o* =¢  for some constant ¢ > 0

which is equivalent to saying that g must satisfy the differential equation
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which implies g(z) = clog(x) for some ¢ > 0



