ST 793: Solution of Midterm-1

Salil Koner

October 16, 2019

Problem 1

(a) Let $\mathbf{Z}_{i}=\left(Z_{i 1}, Z_{i 2}, Z_{i 3}\right) \sim I I D \operatorname{Multinomial}\left(1, p_{1}, p_{2}, p_{3}\right) \quad p_{1}+p_{2}+p_{3}=1$ independent from $X_{i j} \sim f_{j}(x ; \theta)$ independent across i, j.
Then, Y_{i} defined by

$$
Y_{i}=Z_{i 1} X_{i 1}+Z_{i 2} X_{i 2}+Z_{i 3} X_{i 3}
$$

is distributed as a mixture of the 3 components specified by the problem.
(b) The complete data likelihood comes from the contribution of both \mathbf{Y} and \mathbf{Z}, which is given by

$$
\begin{aligned}
L\left(\boldsymbol{\theta}, p_{1}, p_{2}, p_{3}\right) & =\Pi_{i=1}^{n} f_{\left(Y_{i}, \mathbf{Z}_{i}\right)}\left(y_{i}, \mathbf{z}_{i} ; \boldsymbol{\theta}, \mathbf{p}\right) \\
& =\Pi_{i=1}^{n} f_{Y_{i} \mid} \mathbf{Z}_{i}\left(y_{i} ; z_{i} ; \boldsymbol{\theta}\right) f_{\mathbf{Z}_{i}}\left(\mathbf{z}_{i} ; \mathbf{p}\right) \\
& =\Pi_{i=1}^{n}\left[f_{1}\left(y_{i} \mid \boldsymbol{\theta}\right)^{Z_{i 1}} f_{2}\left(y_{i} \mid \boldsymbol{\theta}\right)^{Z_{i 2}} f_{3}\left(y_{i} \mid \boldsymbol{\theta}\right)^{1-Z_{i 1}-Z_{i 2}}\right]\left[p_{1}^{Z_{i 1}} p_{2}^{Z_{i 1}}\left(1-p_{1}-p_{2}\right)^{1-Z_{i 1}-Z_{i 2}}\right]
\end{aligned}
$$

So, the complete data log-likelihood is

$$
l_{c}\left(\boldsymbol{\theta}, p_{1}, p_{2}, p_{3}\right)=\sum_{i=1}^{n} \sum_{j=1}^{2} Z_{i j}\left[\log f_{j}\left(y_{i} \mid \boldsymbol{\theta}\right)+\log p_{j}\right]+\sum_{i=1}^{n}\left(1-Z_{i 1}-Z_{i 2}\right) \log \left[f_{3}\left(y_{i} \mid \boldsymbol{\theta}\right)+\log \left(1-p_{1}-p_{2}\right)\right]
$$

(c)

$$
\begin{aligned}
Q\left(\boldsymbol{\theta}, \mathbf{p} \mid \mathbf{Y}, \mathbf{p}^{\nu}, \boldsymbol{\theta}^{\nu}\right)= & E l_{c}\left(\boldsymbol{\theta}, p_{1}, p_{2}, p_{3}\right) \mid \mathbf{Y}, \mathbf{p}^{\nu}, \boldsymbol{\theta}^{\nu} \\
= & \sum_{i=1}^{n} \sum_{j=1}^{2} \mathrm{E}\left(Z_{i j} \mid Y_{i}, \mathbf{p}^{\nu}, \boldsymbol{\theta}^{\nu}\right)\left[\log f_{j}\left(y_{i} \mid \boldsymbol{\theta}\right)+\log p_{j}\right] \\
& +\sum_{i=1}^{n}\left(1-\mathrm{E}\left(Z_{i 1} \mid Y_{i}, \mathbf{p}^{\nu}, \boldsymbol{\theta}^{\nu}\right)-\mathrm{E}\left(Z_{i 2} \mid Y_{i}, \mathbf{p}^{\nu}, \boldsymbol{\theta}^{\nu}\right)\right) \log \left[f_{3}\left(y_{i} \mid \boldsymbol{\theta}\right)+\log \left(1-p_{1}-p_{2}\right)\right] \\
= & \sum_{i=1}^{n} \sum_{j=1}^{2} w_{i j}^{\nu}\left[\log f_{j}\left(y_{i} \mid \boldsymbol{\theta}\right)+\log p_{j}\right]+\sum_{i=1}^{n}\left(1-w_{i 1}^{\nu}-w_{i 2}^{\nu}\right) \log \left[f_{3}\left(y_{i} \mid \boldsymbol{\theta}\right)+\log \left(1-p_{1}-p_{2}\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
w_{i j}^{\nu} & =\mathrm{E}\left(Z_{i j} \mid Y_{i}, \mathbf{p}^{\nu}, \boldsymbol{\theta}^{\nu}\right)=P\left(Z_{i j}=1 \mid Y_{i}, \mathbf{p}^{\nu}, \boldsymbol{\theta}^{\nu}\right) \\
& =\frac{f_{j}\left(Y_{i} \mid \boldsymbol{\theta}^{\nu}\right) p_{j}^{\nu}}{\sum_{j=1}^{3} f_{j}\left(Y_{i} \mid \boldsymbol{\theta}^{\nu}\right) p_{j}^{\nu}}
\end{aligned}
$$

Problem 2

(a) The score function is

$$
S(\boldsymbol{\theta})=b(\mathbf{y})-2 c \boldsymbol{\theta}
$$

The Fisher information matrix is

$$
I(\boldsymbol{\theta})=-\mathrm{E}\left(S^{\prime}(\boldsymbol{\theta})\right)=2 c \mathbf{I}_{b}>0 \quad \text { as } c>0
$$

(b) MLE of the solution of the score function, this means

$$
\boldsymbol{\theta}_{\mathrm{MLE}}=\frac{1}{2 c} b(\mathbf{y})
$$

and the maximizer is confirmed by the fact that

$$
S^{\prime}(\boldsymbol{\theta})=-2 c \mathbf{I}_{b} \prec 0 \quad \text { as } c>0
$$

Wald test is

$$
T_{w}=2 c\left(\widehat{\boldsymbol{\theta}}_{\mathrm{MLE}}-\boldsymbol{\theta}_{0}\right)^{\top}\left(\boldsymbol{\theta}_{\mathrm{MLE}}-\boldsymbol{\theta}_{0}\right)
$$

(c) The score test is

$$
T_{s}=\frac{1}{2 c}\left(b(\mathbf{y})-2 c \boldsymbol{\theta}_{0}\right)^{\top}\left(b(\mathbf{y})-2 c \boldsymbol{\theta}_{0}\right)
$$

(d)

$$
\ell\left(\boldsymbol{\theta}_{0}\right)=a(\mathbf{y})+b(\mathbf{y})^{\top} \boldsymbol{\theta}_{0}-c \boldsymbol{\theta}_{0}^{\top} \boldsymbol{\theta}_{0}
$$

and

$$
\ell\left(\widehat{\boldsymbol{\theta}}_{\mathrm{MLE}}\right)=a(\mathbf{y})+\frac{1}{2 c} b(\mathbf{y})^{\top} b(\mathbf{y})
$$

The LRT is given by

$$
T_{\mathrm{LR}}=-2\left[b(\mathbf{y})^{\top} \boldsymbol{\theta}_{0}-c \boldsymbol{\theta}_{0}^{\top} \boldsymbol{\theta}_{0}-\frac{1}{2 c} b(\mathbf{y})^{\top} b(\mathbf{y})\right]=T_{s}+\frac{1}{2 c} b(\mathbf{y})^{\top} b(\mathbf{y})
$$

(e) The null distribution of all the statistics are asymptotically same

$$
T_{w}, T_{s}, T_{\mathrm{LR}} \sim \chi_{b}^{2} \quad \text { asymptotically under } H_{0}
$$

Problem 3

(a) The likelihood function is

$$
L\left(\theta_{1}, \theta_{2}\right)=\left(\theta_{1}+\theta_{2}\right)^{-n} \Pi_{i=1}^{n}\left[\exp \left(-y_{i} / \theta_{1}\right)\right]^{1\left(y_{i}>0\right)}\left[\exp \left(y_{i} / \theta_{2}\right)\right]^{1\left(y_{i} \leq 0\right)}
$$

(b) The log-likelihood function is

$$
\ell\left(\theta_{1}, \theta_{2}\right)=-n \log \left(\theta_{1}+\theta_{2}\right)-\frac{z_{1}}{\theta_{1}}+\frac{z_{2}}{\theta_{2}}
$$

(c) the score function is

$$
S\left(\theta_{1}, \theta_{2}\right)=\left(-\frac{n}{\theta_{1}+\theta_{2}}+\frac{z_{1}}{\theta_{1}^{2}},-\frac{n}{\theta_{1}+\theta_{2}}-\frac{z_{2}}{\theta_{2}^{2}}\right)^{\top}
$$

(d) The MLE is the solution of score equation, this implies

$$
\frac{z_{1}}{\theta_{1}^{2}}=\frac{n}{\theta_{1}+\theta_{2}}=-\frac{z_{2}}{\theta_{2}^{2}} \Longrightarrow \theta_{1}=c \theta_{2} \quad \text { where } c=\sqrt{-\frac{z_{1}}{z_{2}}}
$$

Putting that in one of the equation we get,

$$
\frac{z_{1}}{c^{2} \theta_{2}^{2}}=\frac{n}{c \theta_{2}+\theta_{2}} \Longrightarrow \hat{\theta}_{2}=\frac{(c+1) z_{1}}{n c^{2}}, \hat{\theta}_{1}=\frac{(c+1) z_{1}}{n c}
$$

putting the value of c we get

$$
\hat{\theta}_{1}=\left(1+\sqrt{-\frac{z_{2}}{z_{1}}}\right) \frac{z_{1}}{n} \quad \hat{\theta}_{2}=\left(1+\sqrt{-\frac{z_{1}}{z_{2}}}\right) \frac{z_{2}}{n}
$$

(e) To calculate the Fisher information matrix we need to calculated $E\left(Z_{1}\right)$ and $E\left(Z_{2}\right)$.

$$
\begin{aligned}
E(Y 1(Y>0)) & =\frac{1}{\theta_{1}+\theta_{2}} \int_{0}^{\infty} y \exp \left(-y / \theta_{1}\right) d y \\
& =\frac{\theta_{1}}{\theta_{1}+\theta_{2}} \int_{0}^{\infty} \frac{y}{\theta_{1}} \exp \left(-y / \theta_{1}\right) d y \\
& \left.=\frac{\theta_{1}}{\theta_{1}+\theta_{2}} E(W) \quad \quad \text { where } W \sim \exp \left(\theta_{1}\right)\right] \\
& =\frac{\theta_{1}^{2}}{\theta_{1}+\theta_{2}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
E(Y 1(Y \leq 0)) & =\frac{1}{\theta_{1}+\theta_{2}} \int_{-\infty}^{0} y \exp \left(y / \theta_{2}\right) d y \\
& =\frac{\theta_{2}}{\theta_{1}+\theta_{2}} \int_{-\infty}^{0} \frac{y}{\theta_{2}} \exp \left(y / \theta_{2}\right) d y \\
& =\frac{\theta_{2}}{\theta_{1}+\theta_{2}} E(-W) \quad\left[\text { where } W \sim \exp \left(\theta_{2}\right)\right] \\
& =-\frac{\theta_{2}^{2}}{\theta_{1}+\theta_{2}}
\end{aligned}
$$

Because Y_{i} 's are iid

$$
\begin{aligned}
E\left(Z_{1}\right) & =\frac{n \theta_{1}^{2}}{\theta_{1}+\theta_{2}} \\
\frac{\partial^{2} \ell}{\partial\left(\theta_{1}, \theta_{2}\right)} & =\left(\begin{array}{cc}
\frac{n}{\left(\theta_{1}+\theta_{2}\right)^{2}}-\frac{2 z_{1}}{\theta_{1}^{3}} & \frac{n \theta_{2}^{2}}{\theta_{1}+\theta_{2}} \\
\frac{n}{\left(\theta_{1}+\theta_{2}\right)^{2}} \\
\frac{n}{\left(\theta_{1}+\theta_{2}\right)^{2}} & \frac{n}{\left(\theta_{1}+\theta_{2}\right)^{2}}+\frac{2 z_{2}}{\theta_{2}^{3}}
\end{array}\right)
\end{aligned}
$$

This implies,

$$
I\left(\theta_{1}, \theta_{2}\right)=-\frac{n}{\left(\theta_{1}+\theta_{2}\right)^{2}} \mathbf{J}_{2}+\frac{2 n}{\left(\theta_{1}+\theta_{2}\right)} \operatorname{diag}\left(\theta_{1}^{-1}, \theta_{2}^{-1}\right)
$$

(f) By property of MLE (as all the regularity conditions hold true)

$$
\sqrt{n}\left[\binom{\hat{\theta}_{1}}{\hat{\theta}_{2}}-\binom{\theta_{1}}{\theta_{2}}\right] \rightarrow \mathrm{N}_{2}\left(\mathbf{0}, I\left(\theta_{1}, \theta_{2}\right)^{-1}\right)
$$

Problem 4

Since $X_{n}=\mathcal{O}_{p}(n)$ it implies $X_{n}=n Z_{1 n}$, where $Z_{1 n}=O_{p}(1)$. Similarly $Y_{n}=o_{p}(n)$ implies $Y_{n}=n Z_{2 n}$, where $Z_{2 n} \rightarrow_{p} 0$.
(a) Answer $O_{p}(n)$. Intuition: $X_{n}+Y_{n}=n\left(Z_{1 n}+Z_{2 n}\right)$, where the term $Z_{1 n}+Z_{2 n}$ is also contained in a compact interval for almost all values of n with a high probability. This means $X_{n}+Y_{n}=n \mathcal{O}_{p}(1)=\mathcal{O}_{p}(n)$.
(b) Answer $o_{p}\left(n^{2}\right)$. Intuition: $X_{n} Y_{n}=n^{2} Z_{1 n} Z_{2 n}$, and $Z_{1 n} Z_{2 n} \rightarrow_{p} 0$.

Note: In part (b), because, convergence in probability implies bounded in probability, $X_{n} Y_{n}$ is also $\mathcal{O}_{p}\left(n^{2}\right)$, but it is not the best answer given the amount of information provided.

