Ch 11. Bootstrap

Ana-Maria Staicu

11/21/2019

What is bootstrap?

- A resampling technique that does not require distn assn
- Introduced by Efron 1979 as an alternative methog to jackknife to estimate the accuracy of an estimator
- Used in estimating standard error, constructing confidence intervals, approximating p-value

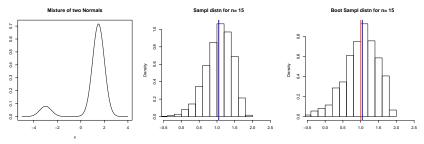
Illustration: Sample mean

Interest: estimate population mean using sample mean from an IID sample. What is the accuracy of your estimator? What is the sampling variability of the estimator?

- Y_1, \ldots, Y_n IID sample from unknown distn with (μ, σ^2)
- Estimator: $\hat{\mu} = \bar{Y}$. Mean/variance: $E[\hat{\mu}] = \mu$; $Var(\hat{\mu}) = \sigma^2/n$
- Accuracy: estimate $Var(\hat{\mu})$ using the sample standard deviation $\{\sum_{i=1}^{n} (y_i \bar{y})^2 / n\}^{1/2}$
- ► Statistical inference: need sampling distn of µ? CLT-based confidence intervals require large n?
- Reliable inference requires n sufficiently large! Also how to estimate the sampling variability of the estimator, if it's not readily available?

Illustration: Sample mean (cont'd)

Left: underlying population distn. Middle: Sampling distn of the sample mean. Right: Approx sampling distn using bootstrap



In most cases we only have access to a sample from the pop distn. How to approximate the sampling distn of the estimator, when the sample size is moderate?

General intuition

Setting: Y_1, \ldots, Y_n IID from distn F and θ a para attached to F. Mathematically, describe it via using functional $t(\cdot)$

$$\theta = t(F).$$

Example: mean $\mu = \int y dF(y) = E_F[Y_1]$; variance $\sigma^2 = \int (y - \mu)^2 dF(y) = E_F[(Y_1 - \mu)^2]$; etc. <u>Goal</u>: Find an estimator for θ and calculate its standard deviation. Plug-in estimator: $\hat{\theta} = t(\hat{F}_n)$, where \hat{F}_n is the empirical CDF defined

$$\widehat{F}_n(y) = \frac{|\{Y_i: Y_i \leq y, i = 1, \ldots, n\}|}{n}.$$

What is the plug in estimator for μ and σ^2 ? Eg $\hat{\mu} = E_{\hat{F}_n}[Y_1]$.

Remark: The para θ for F is viewed similarly to how $\hat{\theta}$, for a given sample, is for \hat{F}_n , for that sample!

Real world and Bootstrap world

Real world:

- unknown pop distn F and $\theta = t(F)$
- Y_1, \ldots, Y_n is IID sample drawn from F
- $\hat{\theta} = s(\mathbf{Y})$ is estimator/statistic of interest; $\mathbf{Y} = (Y_1, \dots, Y_n)$

Sampling distn $\hat{\theta}$: 1) draw *B* data sets of size *n* from *F*; 2) compute $\hat{\theta}^{b}$ for each data set *b*; 3) Approx dist of $\hat{\theta}$ by distn of $\{\hat{\theta}^{1}, \dots, \hat{\theta}^{B}\}$.

Essentially use Monte Carlo simulation to get sampling distn of $\hat{\theta}$.

Remark: The sampling distn, due to its dependence on F, is not always accessible!

Real world and Bootstrap world (cont'd)

Bootstrap world (always accessible). Say you observe data **y**:

- estimate F by empirical distn \hat{F}_n ; $\hat{\theta}_y = t(\hat{F}_n)$
- Y_1^*, \ldots, Y_n^* is sample drawn from \widehat{F}_n .
- ▶ $\widehat{ heta}^* = s(\mathbf{Y}^*)$ based on bootstrap sample $\mathbf{Y}^* = (Y_1^*, \dots, Y_n^*)$

The statistic $\widehat{\theta}^*$ is called "bootstrap replication".

• How many different boot samples of size *n* can draw from \hat{F}_n ?

$$\binom{2n-1}{n-1}$$

- ▶ This gets large quickly! Instead use reasonable large B number of samples from \hat{F}_n . For standard error estimation: $B \approx 200$
- ▶ Distn of $(\hat{\theta} \theta)$ is approx by the distn of the boot replicates $(\hat{\theta}^{*b} \hat{\theta}_y)$, b = 1, ..., B!

More intuition

More generally, assume $\hat{\theta}$ is $AN(\theta, \sigma^2/n)$. A one-term Edgeworth expansion (expansion of the CDF using its cumulants) for $\hat{\theta}$ gives

$$P\left\{\sqrt{n}(\widehat{\theta}-\theta)\leq x
ight\}=\Phi(x/\sigma)+rac{c}{\sqrt{n}}+o(n^{-1/2}) ext{ for each } x,$$

where Φ is the CDF of N(0,1).

Analogously, in the bootstrap world we have

$$P^*\left\{\sqrt{n}(\widehat{\theta}^* - \widehat{\theta}) \le x \middle| \mathbf{Y}\right\} = \Phi(x/\sigma_n^*) + \frac{c_n}{\sqrt{n}} + o_p(n^{-1/2}); \text{ for each } x,$$

where $\sigma_n^* \rightarrow_p \sigma$ and $c_n \rightarrow_p c$ as $n \rightarrow \infty$.

More intuition (cont'd)

Now suppose that $\sigma_n^* - \sigma = O_p(n^{-1/2})$. It follows (Taylor series)

$$P\left\{\sqrt{n}(\widehat{\theta} - \theta) \le x\right\} - P^*\left\{\sqrt{n}(\widehat{\theta}^* - \widehat{\theta}) \le x | \mathbf{Y}\right\}$$
$$= \Phi(x/\sigma) + \frac{c}{\sqrt{n}} - \left\{\Phi(x/\sigma_n^*) + \frac{c_n}{\sqrt{n}}\right\} + o_p(n^{-1/2})$$
$$= O_p(n^{-1/2}).$$

It follows that the bootstrap distn of $\sqrt{n}(\hat{\theta}^* - \hat{\theta})$ is within $O_p(n^{-1/2})$ of the distn of $\sqrt{n}(\hat{\theta} - \theta)$.

Bootstrap alg. for estimating standard errors

- Denote sample from the unknown distn F by Y_1, \ldots, Y_n
- Select B independent bootstrap samples Y^{*1},..., Y^{*B} each consisting of n data values drawn with replacement from Y₁,..., Y_n.
- Evaluate the bootstrap replication corresponding to each bootstrap sample

$$\widehat{\theta}^{*b} = s(\mathbf{Y}^{*b}), \qquad b = 1, \dots, B$$

► Estimate the standard error se_F((D) by the sample standard deviation of the B bootstrap replications

$$\widehat{s}e_{B} = \left\{\frac{1}{B-1}\sum_{b=1}^{B}(\widehat{\theta}^{*b} - \overline{\theta}^{*})^{2}\right\}^{1/2}$$

where $\bar{\theta}^* = \sum_{b=1}^{B} \hat{\theta}^{*b} / B$.

Bootstrap alg. for estimating standard errors (cont'd)

► The bootstrap estimate of se_F(\(\heta\)) is a plug-in estimate that uses \(\heta\)_n in place of the unknown F and is defined by se_{\(\heta\)}_{F₁}(\(\heta\)^{*})

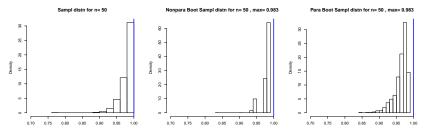
$$se_{\widehat{F}_n}(\widehat{ heta}^*) = \lim_{B o \infty} \widehat{se}_B$$

We refer to B = ∞ by "ideal bootstrap"; se_∞ is the "ideal bootstrap estimate of standard error".

The type of bootstrap discussed here is called "non-parametric bootstrap" because it uses NO information about the underlying distn. This is in contrast to the "parametric bootstrap" which uses a different estimate for F based on assumed parametric model.

Example of bootstrap failure

Setting: $Y_1, \ldots, Y_n \sim \text{IID } Unif(0, \theta)$. The MLE of θ is $Y_{(n)}$ - the largest sample value.



Left: Sampling distn of $Y_{(n)}$. Middle: Nonpara Boot approx sampling distn. Right: Para Boot approx

- ▶ What happens with the nonparam bootstrap? The empirical distn *F_n* is not a good estimate of the true, in the extreme tail
- In general the nonparam bootstrap fails if the parameter is non a smooth functional (Bickel and Freedman 1981, Shao 1994)
- In this case, more knowledge of F is required to remedy matters. What is param bootstrap?

Parametric bootstrap

Underlying distn depends on para η , say $F = F(\cdot; \eta)$ and let θ be para of interest. Let $\mathbf{Y} = (Y_1, \ldots, Y_n)$ be IID sample from F. Let $\hat{\theta} = s(\mathbf{Y})$ be estimator of θ as before.

Bootstrap world (always accessible):

- estimate distn $\widehat{F}(\cdot) = F(\cdot, \widehat{\eta})$, for $\widehat{\eta}$ based on observed data $m{y}$
- Y_1^*, \ldots, Y_n^* is sample drawn from \hat{F} .
- ▶ $\hat{\theta}^* = s(\mathbf{Y}^*)$ based on bootstrap sample $\mathbf{Y}^* = (Y_1^*, \dots, Y_n^*)$; called "bootstrap replication".
- How many different boot samples of size *n* can draw from \widehat{F} ?
- ► Use reasonable large B number of samples from \hat{F} . For standard error estimation: $B \approx 200$
- ▶ Distn of $(\hat{\theta} \theta)$ is approx by the distn of boot replicates $(\hat{\theta}^{*b} \hat{\theta}_y), b = 1, ..., B!$

Golden rule of bootstrapping

Bootstrap statistics are to the original sample statistic

as

the original sample statistic is to the population parameter

Application of bootstrap (I)

Let X and Y designate the yield return of two financial assets of interest. Denote by α the fraction of our money to be invested in X; $(1 - \alpha)$ fraction is invested in Y. The yield return is

$$\alpha X + (1 - \alpha)Y$$

The optimal α is the value that minimizes the risk of our investments (variance of the investments), $\alpha_{opt} = \arg \min_{\alpha \in (0,1)} Var\{\alpha X + (1 - \alpha)Y\}.$ Algebra gives (under some assn)

$$\alpha_{opt} = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}$$

 $\sigma_X^2 = VarX$, $\sigma_Y^2 = VarY$, and $\sigma_{XY} = Cov(X, Y)$.

Application of bootstrap (I, cont'd)

Suppose the data consists of 50 pairs $\{(x_i, y_i) : i = 1, ..., 50\}$. Estimate α_{opt} and its variability!

Compute estimates for of the co/variances , say $\hat{\sigma}_X^2$, $\hat{\sigma}_Y^2$ and $\hat{\sigma}_{XY}$ and get a plug-in estimate of α_{opt} ,

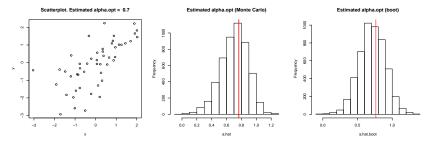
$$\widehat{\alpha}_{opt} = \frac{\widehat{\sigma}_Y^2 - \widehat{\sigma}_{XY}}{\widehat{\sigma}_X^2 + \widehat{\sigma}_Y^2 - 2\widehat{\sigma}_{XY}}.$$

Remarks:

- What is the sampling distn of $\widehat{\alpha}_{opt}$?
- How to calculate the accuracy/precision of the estimator $\hat{\alpha}_{opt}$?
- Suppose parametric assumption about the distribution for (X, Y) are not reasonable!

Application of bootstrap (I, cont'd)

Left: Scatterplot of data ($\hat{\alpha}_{opt,data} = 0.7$). Middle: Sampling distn of $\hat{\alpha}_{opt}$ as approx by Monte Carlo simulation (true mean ≈ 0.76). Right: Sampling distn of $\hat{\alpha}_{opt}$ by resampling the pairs (*bootstrap*).



Application of bootstrap (II): linear regression

Consider data (X_i, Y_i) for i = 1, ..., n and assume the linear model $Y_i = \alpha + \beta X_i + \epsilon_i$ where $\epsilon_i \sim (0, \sigma_i^2)$.

Least squares estimators for α and β are:

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

$$Var(\widehat{\beta}) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sigma_i^2}{SS_X^4}$$

$$SS_X^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$\widehat{\alpha} = \bar{Y} - \widehat{\beta}\bar{X}$$

Linear regression (cont'd)

Classical bootstrap: resample the residuals

- Estimate the residuals $e_i = Y_i \widehat{\alpha} \widehat{\beta}X_i$
- Draw e_1^*, \ldots, e_n^* from $\{\widehat{e}_1, \ldots, \widehat{e}_n\}$ where $\widehat{e}_i = e_i n^{-1} \sum_{i=1}^n e_i$
- Form bootstrap (X_i^*, Y_i^*) where $X_i^* = X_i$ and $Y_i^* = \widehat{\alpha} + \widehat{\beta}X_i + e_i^*$
- Fit linear regression model and estimate $\hat{\beta}^*$ and $\hat{\alpha}^*$. Obtain

$$\widehat{\beta}^* = \widehat{\beta} + \frac{\sum_{i=1}^n (X_i - \bar{X})(e_i^* - \bar{e}^*)}{\sum_{i=1}^n (X_i - \bar{X})^2}$$
$$\widehat{\alpha}^* = \widehat{\alpha} + (\widehat{\beta} - \widehat{\beta}^*)\bar{X} + \bar{e}^*$$

Repeat the procedure B times

- * $Var_B(\widehat{\beta}^*) = E_B[(\widehat{\beta}^* \widehat{\beta})^2] \approx Var(\widehat{\beta})$ is efficient when $\sigma_i^2 = \sigma^2$
- * $Var_B(\hat{\beta}^*)$ does not approximate $Var(\hat{\beta})$ when $\sigma_i^2 \neq \sigma^2$ (inconsistent when the errors are heteroscedastic).

Linear regression (cont'd)

Bootstrap of the pairs: resample the pairs

- Resample the pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$
- Let $(X_1^*, Y_1^*), \dots, (X_n^*Y_n^*)$ be the bootstrap sample
- Fit linear regression model and estimate $\hat{\beta}^*$ and $\hat{\alpha}$. Obtain

$$\hat{\beta}^{*} = \frac{\sum_{i=1}^{n} (X_{i}^{*} - \bar{X}^{*}) (Y_{i}^{*} - \bar{Y}^{*})}{\sum_{i=1}^{n} (X_{i}^{*} - \bar{X}^{*})^{2}}$$
$$\hat{\alpha}^{*} = \bar{Y}^{*} - \hat{\beta}^{*} \bar{X}^{*}$$

Repeat the procedure B times

* $Var_B(\hat{\beta}^*) \approx Var(\hat{\beta})$ even when $\sigma_i^2 \neq \sigma^2$ Thus *pair bootstrap* is robust to heteroscedasticity.

When does bootstrap work well?

- Sample Means
- Sample Variances
- Sample Coefficient of Variation
- Maximum Likelihood Estimators
- Least Squares Estimators
- Correlation Coefficients
- Regression Coefficients
- Smooth transforms of these statistics

Remarks

- Bootstrap is based on *resampling the original data*.
 Characteristics about the generating distn, that are present in the data, are expected to be present in resamples of the data.
- The study of bootstrap has been expanded beyond IID
- Resampling is a Monte Carlo method of *simulating datasets* from a given data, *but without assumptions about the underlying distn.*
- Resampling procedures are supported by solid theoretical foundations.
- Key monographs on bootstrap (IID): Efron and Tibshirani (1993), Hall (1992), Davison and Hinkley (1997), Chernik (2007), Chernik and Labudde(2011) etc + (dependent data) Lahiri, (2003), etc.