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What is bootstrap?

I A resampling technique that does not require distn assn
I Introduced by Efron 1979 as an alternative methog to jackknife

to estimate the accuracy of an estimator
I Used in estimating standard error, constructing confidence

intervals, approximating p-value



Illustration: Sample mean

Interest: estimate population mean using sample mean from an IID
sample. What is the accuracy of your estimator? What is the
sampling variability of the estimator?

I Y1, . . . ,Yn IID sample from unknown distn with (µ, σ2)
I Estimator: µ̂ = Ȳ . Mean/variance: E [µ̂] = µ; Var(µ̂) = σ2/n
I Accuracy: estimate Var(µ̂) using the sample standard deviation
{
∑n

i=1(yi − ȳ)2/n}1/2

I Statistical inference: need sampling distn of µ̂! CLT-based
confidence intervals require large n!

I Reliable inference requires n sufficiently large! Also how to
estimate the sampling variability of the estimator, if it’s not
readily available?



Illustration: Sample mean (cont’d)

Left: underlying population distn. Middle: Sampling distn of the
sample mean. Right: Approx sampling distn using bootstrap

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mixture of two Normals

x

Sampl distn for n= 15

D
en

si
ty

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boot Sampl distn for n= 15

D
en

si
ty

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

In most cases we only have access to a sample from the pop distn.
How to approximate the sampling distn of the estimator, when the
sample size is moderate?



General intuition
Setting: Y1, . . . ,Yn IID from distn F and θ a para attached to F .
Mathematically, describe it via using functional t(·)

θ = t(F ).

Example: mean µ =
∫

ydF (y) = EF [Y1];

variance σ2 =
∫

(y − µ)2dF (y) = EF [(Y1 − µ)2]; etc.

Goal: Find an estimator for θ and calculate its standard deviation.

Plug-in estimator: θ̂ = t(F̂n), where F̂n is the empirical CDF defined

F̂n(y) = |{Yi : Yi ≤ y , i = 1, . . . , n}|
n .

What is the plug in estimator for µ and σ2? Eg µ̂ = EF̂n
[Y1].

Remark: The para θ for F is viewed similarly to how θ̂, for a given
sample, is for F̂n, for that sample!



Real world and Bootstrap world

Real world:

I unknown pop distn F and θ = t(F )
I Y1, . . . ,Yn is IID sample drawn from F
I θ̂ = s(Y ) is estimator/statistic of interest; Y = (Y1, . . . ,Yn)

Sampling distn θ̂: 1) draw B data sets of size n from F ; 2) compute
θ̂b for each data set b; 3) Approx dist of θ̂ by distn of {θ̂1, . . . , θ̂B}.

Essentially use Monte Carlo simulation to get sampling distn of θ̂.

Remark: The sampling distn, due to its dependence on F , is not
always accessible!



Real world and Bootstrap world (cont’d)
Bootstrap world (always accessible). Say you observe data y :

I estimate F by empirical distn F̂n; θ̂y = t(F̂n)
I Y ∗1 , . . . ,Y ∗n is sample drawn from F̂n.
I θ̂∗ = s(Y ∗) - based on bootstrap sample Y ∗ = (Y ∗1 , . . . ,Y ∗n )

The statistic θ̂∗ is called “bootstrap replication“.

I How many different boot samples of size n can draw from F̂n?

(
2n − 1
n − 1

)

I This gets large quickly! Instead use reasonable large B number
of samples from F̂n. For standard error estimation: B ≈ 200

I Distn of (θ̂ − θ) is approx by the distn of the boot replicates
(θ̂∗b − θ̂y ), b = 1, . . . ,B!



More intuition

More generally, assume θ̂ is AN(θ, σ2/n). A one-term Edgeworth
expansion (expansion of the CDF using its cumulants) for θ̂ gives

P
{√

n(θ̂ − θ) ≤ x
}

= Φ(x/σ) + c√
n + o(n−1/2) for each x ,

where Φ is the CDF of N(0,1).

Analogously, in the bootstrap world we have

P∗
{√

n(θ̂∗ − θ̂) ≤ x
∣∣∣Y} = Φ(x/σ∗n)+ cn√

n+op(n−1/2); for each x ,

where σ∗n →p σ and cn →p c as n→∞.



More intuition (cont’d)

Now suppose that σ∗n − σ = Op(n−1/2). It follows (Taylor series)

P
{√

n(θ̂ − θ) ≤ x
}
− P∗

{√
n(θ̂∗ − θ̂) ≤ x |Y

}
= Φ(x/σ) + c√

n −
{

Φ(x/σ∗n) + cn√
n

}
+ op(n−1/2)

= Op(n−1/2).

It follows that the bootstrap distn of
√

n(θ̂∗ − θ̂) is within
Op(n−1/2) of the distn of

√
n(θ̂ − θ).



Bootstrap alg. for estimating standard errors
I Denote sample from the unknown distn F by Y1, . . . ,Yn
I Select B independent bootstrap samples Y ∗1, . . . ,Y ∗B each

consisting of n data values drawn with replacement from
Y1, . . . ,Yn.

I Evaluate the bootstrap replication corresponding to each
bootstrap sample

θ̂∗b = s(Y ∗b), b = 1, . . . ,B

I Estimate the standard error seF (θ̂) by the sample standatd
deviation of the B bootstrap replications

ŝeB =
{

1
B − 1

B∑
b=1

(θ̂∗b − θ̄∗)2
}1/2

where θ̄∗ =
∑B

b=1 θ̂
∗b/B.



Bootstrap alg. for estimating standard errors (cont’d)

I The bootstrap estimate of seF (θ̂) is a plug-in estimate that
uses F̂n in place of the unknown F and is defined by seF̂n

(θ̂∗)

seF̂n
(θ̂∗) = lim

B→∞
ŝeB

I We refer to B =∞ by “ideal bootstrap”; ŝe∞ is the “ideal
bootstrap estimate of standard error”.

The type of bootstrap discussed here is called “non-parametric
bootstrap” because it uses NO information about the underlying
distn. This is in contrast to the “parametric bootstrap" which uses
a different estimate for F based on assumed parametric model.



Example of bootstrap failure
Setting: Y1, . . . ,Yn ∼ IID Unif (0, θ). The MLE of θ is Y(n) - the
largest sample value.
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Left: Sampling distn of Y(n). Middle: Nonpara Boot approx
sampling distn. Right: Para Boot approx

I What happens with the nonparam bootstrap? The empirical
distn F̂n is not a good estimate of the true, in the extreme tail

I In general the nonparam bootstrap fails if the parameter is non
a smooth functional (Bickel and Freedman 1981, Shao 1994)

I In this case, more knowledge of F is required to remedy
matters. What is param bootstrap?



Parametric bootstrap

Underlying distn depends on para η, say F = F (·; η) and let θ be
para of interest. Let Y = (Y1, . . . ,Yn) be IID sample from F . Let
θ̂ = s(Y ) be estimator of θ as before.

Bootstrap world (always accessible):

I estimate distn F̂ (·) = F (·, η̂), for η̂ based on observed data y
I Y ∗1 , . . . ,Y ∗n is sample drawn from F̂ .
I θ̂∗ = s(Y ∗) - based on bootstrap sample Y ∗ = (Y ∗1 , . . . ,Y ∗n );

called “bootstrap replication“.
I How many different boot samples of size n can draw from F̂?
I Use reasonable large B number of samples from F̂ . For

standard error estimation: B ≈ 200
I Distn of (θ̂ − θ) is approx by the distn of boot replicates

(θ̂∗b − θ̂y ), b = 1, . . . ,B!



Golden rule of bootstrapping

Bootstrap statistics are to the original sample statistic

as

the original sample statistic is to the population parameter



Application of bootstrap (I)

Let X and Y designate the yield return of two financial assets of
interest. Denote by α the fraction of our money to be invested in X ;
(1− α) fraction is invested in Y . The yield return is

αX + (1− α)Y

The optimal α is the value that minimizes the risk of our
investments (variance of the investments),
αopt = arg minα∈(0,1) Var{αX + (1− α)Y }.

Algebra gives (under some assn)

αopt = σ2
Y − σXY

σ2
X + σ2

Y − 2σXY

σ2
X = VarX , σ2

Y = VarY , and σXY = Cov(X ,Y ).



Application of bootstrap (I, cont’d)

Suppose the data consists of 50 pairs {(xi , yi ) : i = 1, . . . , 50}.
Estimate αopt and its variability!

Compute estimates for of the co/variances , say σ̂2
X , σ̂2

Y and σ̂XY
and get a plug-in estimate of αopt ,

α̂opt = σ̂2
Y − σ̂XY

σ̂2
X + σ̂2

Y − 2σ̂XY
.

Remarks:

– What is the sampling distn of α̂opt?
– How to calculate the accuracy/precision of the estimator α̂opt?
– Suppose parametric assumption about the distribution for

(X ,Y ) are not reasonable!



Application of bootstrap (I, cont’d)

Left: Scatterplot of data (α̂opt,data = 0.7). Middle: Sampling distn
of α̂opt as approx by Monte Carlo simulation (true mean ≈ 0.76).
Right: Sampling distn of α̂opt by resampling the pairs (bootstrap).
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Application of bootstrap (II): linear regression

Consider data (Xi ,Yi ) for i = 1, . . . , n and assume the linear model
Yi = α + βXi + εi where εi ∼ (0, σ2

i ).

Least squares estimators for α and β are:

β̂ =
∑n

i=1(Xi − X̄ )(Yi − Ȳ )∑n
i=1(Xi − X̄ )2

Var(β̂) =
∑n

i=1(Xi − X̄ )2σ2
i

SS4
X

SS2
X =

n∑
i=1

(Xi − X̄ )2

α̂ = Ȳ − β̂X̄



Linear regression (cont’d)
Classical bootstrap: resample the residuals

– Estimate the residuals ei = Yi − α̂− β̂Xi
– Draw e∗1 , . . . , e∗n from {ê1, . . . , ên} where êi = ei − n−1∑n

i=1 ei
I Form bootstrap (X ∗i ,Y ∗i ) where X ∗i = Xi and

Y ∗i = α̂ + β̂Xi + e∗i
I Fit linear regression model and estimate β̂∗ and α̂∗. Obtain

β̂∗ = β̂ +
∑n

i=1(Xi − X̄ )(e∗i − ē∗)∑n
i=1(Xi − X̄ )2

α̂∗ = α̂ + (β̂ − β̂∗)X̄ + ē∗

Repeat the procedure B times

* VarB(β̂∗) = EB[(β̂∗ − β̂)2] ≈ Var(β̂) is efficient when σ2
i = σ2

* VarB(β̂∗) does not approximate Var(β̂) when σ2
i 6= σ2

(inconsistent when the errors are heteroscedastic).



Linear regression (cont’d)

Bootstrap of the pairs: resample the pairs

– Resample the pairs (X1,Y1), . . . , (Xn,Yn)
– Let (X ∗1 ,Y ∗1 ), . . . , (X ∗n Y ∗n ) be the bootstrap sample
I Fit linear regression model and estimate β̂∗ and α̂. Obtain

β̂∗ =
∑n

i=1(X ∗i − X̄ ∗)(Y ∗i − Ȳ ∗)∑n
i=1(X ∗i − X̄ ∗)2

α̂∗ = Ȳ ∗ − β̂∗X̄ ∗

Repeat the procedure B times

* VarB(β̂∗) ≈ Var(β̂) even when σ2
i 6= σ2

Thus pair bootstrap is robust to heteroscedasticity.



When does bootstrap work well?

I Sample Means
I Sample Variances
I Sample Coefficient of Variation
I Maximum Likelihood Estimators
I Least Squares Estimators
I Correlation Coefficients
I Regression Coefficients
I Smooth transforms of these statistics



Remarks
– Bootstrap is based on resampling the original data.
Characteristics about the generating distn, that are present in
the data, are expected to be present in resamples of the data.

– The study of bootstrap has been expanded beyond IID

– Resampling is a Monte Carlo method of simulating datasets
from a given data, but without assumptions about the
underlying distn.

– Resampling procedures are supported by solid theoretical
foundations.

– Key monographs on bootstrap (IID): Efron and Tibshirani
(1993), Hall (1992), Davison and Hinkley (1997), Chernik
(2007), Chernik and Labudde(2011) etc + (dependent data)
Lahiri, (2003), etc.


