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What is bootstrap?

» A resampling technique that does not require distn assn

> Introduced by Efron 1979 as an alternative methog to jackknife
to estimate the accuracy of an estimator

» Used in estimating standard error, constructing confidence
intervals, approximating p-value



lllustration: Sample mean

Interest: estimate population mean using sample mean from an [ID
sample. What is the accuracy of your estimator? What is the
sampling variability of the estimator?

>

>

>

Y1,..., Yn 1ID sample from unknown distn with (u, 0?)
Estimator: fi = Y. Mean/variance: E[fi] = p; Var(ii) = 02/n
Accuracy: estimate Var(fi) using the sample standard deviation
(v = 7)?/n}t/?

Statistical inference: need sampling distn of zi! CLT-based
confidence intervals require large n!

Reliable inference requires n sufficiently large! Also how to
estimate the sampling variability of the estimator, if it's not
readily available?



lllustration: Sample mean (cont'd)

Left: underlying population distn. Middle: Sampling distn of the
sample mean. Right: Approx sampling distn using bootstrap

Mixture of two Normals Sampl distn for n=15 Boot Sampl distn for n= 15

In most cases we only have access to a sample from the pop distn.
How to approximate the sampling distn of the estimator, when the
sample size is moderate?



General intuition

Setting: Y1,..., Y, lID from distn F and @ a para attached to F.
Mathematically, describe it via using functional ¢(-)

0 = t(F).

Example: mean p = [ ydF(y) = EF[Y1];

variance 02 = [(y — u)?dF(y) = EF[(Y1 — p)?]; etc.

Goal: Find an estimator for # and calculate its standard deviation.
Plug-in estimator: 6 = t(F,), where F, is the empirical CDF defined

HYi:Yi<y, i=1,...,n}

/'L:n()’) = n

What is the plug in estimator for 41 and 0®? Eg i = E [Y1].

Remark: The para 6 for F is viewed similarly to how 0, for a given
sample, is for F,, for that sample!



Real world and Bootstrap world

Real world:

» unknown pop distn F and 0 = t(F)

> Yi,..., Y, is lID sample drawn from F

» = s(Y) is estimator /statistic of interest; ¥ = (Y1,..., Yy)
Sampling distn 0: 1) draw B data sets of size n from F; 2) compute
6P for each data set b; 3) Approx dist of 6 by distn of {%,... 65}
Essentially use Monte Carlo simulation to get sampling distn of 9.

Remark: The sampling distn, due to its dependence on F, is not
always accessible!



Real world and Bootstrap world (cont'd)
Bootstrap world (always accessible). Say you observe data y:

» estimate F by empirical distn It',,; 5y = t(lt',,)
» Y, ..., Y} is sample drawn from lt_,,.

» 6* = s(Y*) - based on bootstrap sample Y* = (Y9, ..., Y
The statistic * is called “bootstrap replication".

» How many different boot samples of size n can draw from Fn?

2n—1
n—1
> This gets large quickly! Instead use reasonable large B number
of samples from F,. For standard error estimation: B = 200

> Distn of (9 0) is approx by the distn of the boot replicates
@t —8,), b=1,...,B!



More intuition

More generally, assume 6 is AN(6,52/n). A one-term Edgeworth
expansion (expansion of the CDF using its cumulants) for 6 gives

P {ﬁ(é— ) < x} =®(x/0) + % +o(n"Y?)  for each x,

where ¢ is the CDF of N(0,1).

Analogously, in the bootstrap world we have

P* {ﬁ(g* —6) < x‘ Y} = d)(x/o:)—i-%—kop(n*l/z); for each x,

where o, =, 0 and ¢, =, c as n — 0.



More intuition (cont'd)

Now suppose that o} — o = O,(n~1/2). It follows (Taylor series)

P{Vn(@-0)<x} — P {Vn(@ -0)<x|Y}

= o(x/o) +—{¢(x/a }+op( -1/
= Op(n _1/2)-

/\

It follows that the bootstrap distn of V(6" — ) is within
Op(n~1/2) of the distn of /n(6 — 6).



Bootstrap alg. for estimating standard errors

» Denote sample from the unknown distn F by Yi,...,Y,

» Select B independent bootstrap samples Y*1, ..., Y*B each
consisting of n data values drawn with replacement from
Yi,..., Yo

» Evaluate the bootstrap replication corresponding to each
bootstrap sample

0 =s(Y*™®,  b=1,....B

-~

» Estimate the standard error seg(0) by the sample standatd
deviation of the B bootstrap replications

1/2

1 &
~ nxb P2
seB—{B_IE(H 6)}

b=1

where §* = 8 | 6+ /B.



Bootstrap alg. for estimating standard errors (cont'd)

> The bootstrap estimate of se,:(@) is a plug-in estimate that
uses Fj in place of the unknown F and is defined by se~ (6*)

A* _ . ~
se?n(Q )= Bllm sep

> We refer to B = oo by “ideal bootstrap”; sé, is the “ideal
bootstrap estimate of standard error”.

The type of bootstrap discussed here is called “non-parametric
bootstrap” because it uses NO information about the underlying
distn. This is in contrast to the “parametric bootstrap" which uses
a different estimate for F based on assumed parametric model.



Example of bootstrap failure
Setting: Y1,..., Yy ~ lID Unif(0,6). The MLE of 0 is Y, - the
largest sample value.

Sampl distn for n= 50 Nonpara Boot Sampl distn for n= 50 , max= 0.983 Para Boot Sampl distn for n= 50 , max= 0.983
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Left: Sampling distn of Y{,). Middle: Nonpara Boot approx
sampling distn. Right: Para Boot approx

» What happens with the nonparam bootstrap? The empirical
distn F, is not a good estimate of the true, in the extreme tail

> In general the nonparam bootstrap fails if the parameter is non
a smooth functional (Bickel and Freedman 1981, Shao 1994)

> In this case, more knowledge of F is required to remedy
matters. What is param bootstrap?



Parametric bootstrap

Underlying distn depends on para 7, say F = F(-;n) and let 6 be
para of interest. Let Y = (VY1,...,Y,) be IID sample from F. Let
0 = s(Y) be estimator of 6 as before.

Bootstrap world (always accessible):

> estimate distn F(-) = F(-,7), for 7j based on observed data y

» Y, ..., Y] is sample drawn from F.

» 0* = s(Y*) - based on bootstrap sample Y* = (Y;,..., Y?);
called “bootstrap replication”.

» How many different boot samples of size n can draw from F?

» Use reasonable large B number of samples from F. For
standard error estimation: B & 200

» Distn of (9 0) is approx by the distn of boot replicates
6 -6,), b=1,...,B!



Golden rule of bootstrapping

Bootstrap statistics are to the original sample statistic
as

the original sample statistic is to the population parameter



Application of bootstrap (1)

Let X and Y designate the yield return of two financial assets of
interest. Denote by « the fraction of our money to be invested in X;
(1 — «) fraction is invested in Y. The yield return is

aX +(1—a)Y

The optimal « is the value that minimizes the risk of our
investments (variance of the investments),
Qopt = arg minge(o,1) Var{aX + (1 —a)Y}.

Algebra gives (under some assn)

2

Oy —O0XY
2 2
O'X+O'Y—2O'XY

Qopt =

0% = VarX, 03 = VarY, and oxy = Cov(X,Y).



Application of bootstrap (I, cont'd)

Suppose the data consists of 50 pairs {(x;,y;) : i =1,...,50}.
Estimate aop: and its variability!

Compute estimates for of the co/variances , say 3%, 8%, and oxy
and get a plug-in estimate of agpt,

/\2 o~
~ /\2 ~ .
Ox +0y —20xy

Qopt =

Remarks:

— What is the sampling distn of ap:?
— How to calculate the accuracy/precision of the estimator qopt?

— Suppose parametric assumption about the distribution for
(X, Y) are not reasonable!



Application of bootstrap (I, cont'd)

Left: Scatterplot of data (Qopt,data = 0.7). Middle: Sampling distn
of Qopt as approx by Monte Carlo simulation (true mean =~ 0.76).
Right: Sampling distn of @op: by resampling the pairs (bootstrap).

Scatterplot. Estimated alpha.opt = 0.7 Estimated alpha.opt (Monte Carlo) Estimated alpha.opt (boot)
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Application of bootstrap (Il): linear regression

Consider data (X, Y;) for i = 1,...,n and assume the linear model
Y; = a+ BX; + € where ¢; ~ (0,0?).

Least squares estimators for av and (3 are:

Q)
Il
<
|
x



Linear regression (cont'd)
Classical bootstrap: resample the residuals

>

Estimate the residuals ¢, = Y; — & — BX,-
Draw ef,..., e} from {€1,...,€,} where & =¢; —n 137, &
Form bootstrap (X, Y;*) where X* = X; and
Yi=a+pBX +e
Fit linear regression model and estimate B* and a*. Obtain
Y (Xi = X)(ef — &)
(X = X)?
+(B-B)X +&

+

®)

g =

%

Q)

Repeat the procedure B times
Varg(B*) = Eg[(B* — B)?] ~ Var(B) is efficient when 0? =o?

Varg(B*) does not approximate Var(3) when o? # 0
(inconsistent when the errors are heteroscedastic).



Linear regression (cont'd)

Bootstrap of the pairs: resample the pairs

— Resample the pairs (X1, Y1),...,(Xn, Ya)
— Let (X7, Y7),...,(X}Y/) be the bootstrap sample

Fit linear regression model and estimate 3* and @. Obtain

| 2
o LG X( - 7
Yt (X = X*)?
o = \‘/* N B*)_(*

Repeat the procedure B times

*

Varg(*) ~ Var(3) even when o2 # o2

Thus pair bootstrap is robust to heteroscedasticity.



When does bootstrap work well?

» Sample Means

» Sample Variances

» Sample Coefficient of Variation
» Maximum Likelihood Estimators
» Least Squares Estimators

» Correlation Coefficients

> Regression Coefficients

» Smooth transforms of these statistics



Remarks

— Bootstrap is based on resampling the original data.
Characteristics about the generating distn, that are present in
the data, are expected to be present in resamples of the data.

— The study of bootstrap has been expanded beyond IID

— Resampling is a Monte Carlo method of simulating datasets
from a given data, but without assumptions about the
underlying distn.

— Resampling procedures are supported by solid theoretical
foundations.

— Key monographs on bootstrap (IID): Efron and Tibshirani
(1993), Hall (1992), Davison and Hinkley (1997), Chernik
(2007), Chernik and Labudde(2011) etc + (dependent data)
Lahiri, (2003), etc.



