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We will discuss applications of bootstrap for constructing confidence
intervals (CIs) and hypothesis testing.

I Recall defn of CIs: Given an estimate θ̂ of para θ and an
estimated standard error ŝe the ususual 100(1− 2α)% CIs are
constructed as

θ̂ ± z1−αŝe;

where z1−α is the (1− α) quantile of N(0, 1). These CI rely on a
normal asymptotic distribution of θ̂.

Interpretation: under the normality assn, (θ̂ − z1−αŝe, θ̂ + z1−αŝe)
contains the true value θ with probability (1− α). Alternatively, for
a one-sided tail.

P(θ ≥ θ̂ − z1−αŝe) ≈ 1− α.

Next: How to use bootstrap to construct valid CIs?



Percentile interval

The 100(1− 2α)% bootstrap percentile interval for θ is defined

(θ̂lo, θ̂up) = (θ̂∗(α)
B , θ̂

∗(1−α)
B )

where θ̂∗(α)
B and θ̂∗(1−α)

B are the 100αth and 100(1− α)th empirical
percentile of the bootstrap replicates θ̂∗1, . . . , θ̂∗B.

Properties/technical details:

I its success depends on how well the distn of θ̂∗ approx the
distn of θ̂;

I choose large B; for the IID simple case choose B = 2000;
I the percentile interval is invariant to transformations of θ.



Percentile interval: justification
Does the percentile CI guarantee that it contains the true para with
probab equal to 100(1− 2α)?

I Key assn: Efron’s motivation was based on the assn that it
exists a monotone increasing transformation g(·) such that

P
(
g(θ̂)− g(θ) ≤ x

)
= Φ(x);

heere Φ(·) does not have to be the CDF of a standard normal.
It’s sufficient to be symmetric about zero.

I Justification roadmap: Consider one-sided CIs and construct
the one sided for θ (real world). Then show that the lower
bound coincided with the corresponding percentile of the
boostrap replicate samples (boot world).

I Percentile interval doesn not require the explicit form of g(·).



Bias corrected (BC) interval. Intuition

I The percentile intervals work if the distn of θ̂ doesn’t have
median equal to θ (median unbiased). If that’s not the case,
then they are biased. Th BC intervals correct this bias.

I Assume that it exists a monotone increasing transformation
g(·) such that we have

P
(
g(θ̂)− g(θ) + z0 ≤ x

)
= Φ(x);

where z0 accounts for non-symmetry in the distn of θ̂.
I The constant z0 is calculated as

P(θ̂ ≤ θ) =
(
g(θ̂)− g(θ) ≤ 0

)
= Φ(z0).



Bias corrected (BC) interval

The 100(1− 2α)% bias corrected percentile interval for θ is
defined by the 100α1th and 100(1− α2)th percentiles in the
boostrap sample of replicates

(θ̂lo, θ̂up) = (θ̂∗(α1)
B , θ̂

∗(1−α2)
B )

where α1 = Φ
(
2z0 + Φ−1(α)

)
and 1− α2 = Φ

(
2z0 + Φ−1(1− α)

)
.

I Justification: similar to the previous arguments. Work on the
board.

I BC intervals are invariant to transformations of θ.



Bias corrected accelerated (BCa) interval (intuition only)

There is a second correction of the percentil intervals, called bias
corrected percentile intervals. They rely on the assn that it
exists a monotone increasing transformation g(·) such that we have

P
(

g(θ̂)− g(θ)
1 + ag(θ) + z0 ≤ x

)
= Φ(x)

where a - is the acceleration and z0 as before.

These intervals are more complicated in form. Not discussed here!



Confidence intervals: Reflected percentile

Recall that the bootstrap procedure approximates the distn of θ̂ − θ
by the empirical distribution of θ̂∗ − θ̂.

The 100(1− 2α)% reflected percentile for θ is defined by(
2θ̂ − θ̂∗(1−α)

b , 2θ̂ − θ̂∗(α)
b

)
.

where θ̂∗(α)
B and θ̂∗(1−α)

B are the 100αth and 100(1− α)th empirical
percentile of θ̂∗1, . . . , θ̂∗B.

I Justification: on the board.
I Not invariant to tranformations of θ.
I Other names for this interval: hybrid percentile (Shao & Tu,

1995) and basic interval (Davison & Hinkley, 1997).



Confidence intervals: bootstrap t confidence intervals
The bootstrap-t interval is based on the assn that the distn of

tn = θ̂ − θ
σ̂

is approximated by the empirical distn of

t∗
n = θ̂∗ − θ̂

σ̂∗ .

The 100(1− 2α)% bootstrap - t interval for θ is defined by(
θ̂ − t∗(1−α)

B σ̂∗, θ̂ − t∗(α)
B σ̂∗

)
.

where t∗(α)
B and t∗(1−α)

B are the 100α and 100(1− α) percentiles in
the values {t∗1

n , . . . , t∗B
n }’s.

I It requires double bootstrap: one to calculate θ̂∗b
n and another

to get σ̂∗b used in the calculation of t∗b
n .

I Justification:on the board.



Bootstrap for hypothesis testing

Consider a general hypothesis testing problem, where the test
statistic is specified. To obtain p-value we need to know the distn of
the test statistics under the null hypothesis!

I Bootstrap is used to approximate the distribution of the test
statistic (call it tn) under the null hypothesis.

I Key idea: contruct bootstrap samples in a way that ensures
that the null hypothesis is valid.

I For every bootstrap draw calculate t∗b
n .

I P-value is approximates as

p − value = |{t
∗b
n ≥ t0

n : b = 1, . . . ,B}|
B ,

where t0
n is the value of the test statistic for the observed data.



Example: two sample testing via bootstrap
Consider two samples: X1, . . . ,Xm ∼ IID F and Y1, . . . ,Yn ∼ IID G
and assume that the two distribution differ solely in their mean, call
them µF and µG respectively.

I Interest in testing H0 : µF = µG .
I Test statistic

tn = X̄ − Ȳ
sp
√
1/m + 1/n

where sp is the pooled standard error defined as

s2
p = {(m − 1)s2

X + (n − 1)s2
Y }/(m + n − 2)

and s2
X and s2

Y are sample variances.
I For moderate sample sizes, and assuming F and G are normal,

the null distn of tn is Stundent t with df = m + n − 2.
I Alternatively, use bootstrap to approx the null distn of tn.



Final remarks

I Bootstrap is a computationally intensive method helpful to
estimate bias, standard deviation, construct confidence
intervals, estimate p-values.

I There is rich literature (monographs + papers) on methods
and theoretical properties of bootstrap techniques in many
settings, including spatial stats, functional data etc.

I Last word: bootstrap methods can be extremely slow. When
implementing boostrap, avoid for loops.


