ST 793: Solution of Homework-5

Salil Koner

November 18, 2019

Book problems

Problem 5.10

$$
\begin{align*}
\mathbf{Y}_{n}^{\top} \mathbf{C}_{n} \mathbf{Y}_{n}-\mathbf{Y}^{\top} \mathbf{C Y} & =\mathbf{Y}_{n}^{\top} \mathbf{C}_{n} \mathbf{Y}_{n}-\mathbf{Y}_{n}^{\top} \mathbf{C} \mathbf{Y}_{n}+\mathbf{Y}_{n}^{\top} \mathbf{C} \mathbf{Y}_{n}-\mathbf{Y}^{\top} \mathbf{C Y} \\
& =\mathbf{Y}_{n}^{\top}\left(\mathbf{C}_{n}-\mathbf{C}\right) \mathbf{Y}_{n}+\mathbf{Y}_{n}^{\top} \mathbf{C Y}_{n}-\mathbf{Y}^{\top} \mathbf{C Y} \tag{1}
\end{align*}
$$

Now, $\mathbf{C}_{n} \xrightarrow{p} \mathbf{C}$ implies $\mathbf{C}_{n}-\mathbf{C} \xrightarrow{p} 0$. This along with $\mathbf{Y}_{n} \xrightarrow{d} \mathbf{Y}$ implies that by Slutsky's theorem,

$$
\mathbf{Y}_{n}^{\top}\left(\mathbf{C}_{n}-\mathbf{C}\right) \mathbf{Y} \xrightarrow{d} \mathbf{Y}^{\top} \mathbf{0} \mathbf{Y}=0
$$

Because, convergence in distribution to a constant implies convergence in probability, we have

$$
\begin{equation*}
\mathbf{Y}_{n}^{\top}\left(\mathbf{C}_{n}-\mathbf{C}\right) \mathbf{Y} \xrightarrow{p} 0 \tag{2}
\end{equation*}
$$

For the second part in 1 we will use continuous mapping theorem. Take $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ such that $g(\mathbf{X})=\mathbf{X}^{\top} \mathbf{C X}$. Then g is a continuous function of \mathbf{X}. By CMT, we have

$$
\begin{equation*}
\mathbf{Y}_{n}^{\top} \mathbf{C} \mathbf{Y}_{n}=g\left(\mathbf{Y}_{n}\right) \xrightarrow{d} g(\mathbf{Y})=\mathbf{Y}^{\top} \mathbf{C Y} \tag{3}
\end{equation*}
$$

Equation (2) and (3) together completes the proof.

Problem 6.9

The Wald test-statistic is

$$
T_{w}=n\left(\hat{\boldsymbol{\theta}}_{1}-\boldsymbol{\theta}_{10}\right)^{\top}\left(\left[\mathbf{I}(\hat{\boldsymbol{\theta}})^{-1}\right]_{11}\right)^{-1}\left(\hat{\boldsymbol{\theta}}_{1}-\boldsymbol{\theta}_{10}\right)
$$

Because, $\mathbf{I}(\boldsymbol{\theta})$ is a continuous function of $\boldsymbol{\theta}$ and the fact that $\hat{\boldsymbol{\theta}}_{1} \xrightarrow{p} \boldsymbol{\theta}_{10}$, we have

$$
\begin{equation*}
\left[\mathbf{I}(\hat{\boldsymbol{\theta}})^{-1}\right]_{11} \xrightarrow{p}\left[\mathbf{I}\left(\boldsymbol{\theta}_{10}\right)^{-1}\right]_{11} \tag{4}
\end{equation*}
$$

From equation (6.22) in the book, we get

$$
\begin{equation*}
\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{1}-\boldsymbol{\theta}_{10}\right) \xrightarrow{d} \mathrm{~N}\left(\mathbf{d},\left[\mathbf{I}\left(\boldsymbol{\theta}_{10}\right)^{-1}\right]_{11}\right) \quad[\text { Under the Pitman alternatives }] \tag{5}
\end{equation*}
$$

Let $\mathbf{Y}_{n}=\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{1}-\boldsymbol{\theta}_{10}\right), \mathbf{C}_{n}=\left(\left[\mathbf{I}(\hat{\boldsymbol{\theta}})^{-1}\right]_{11}\right)^{-1}$ and $\mathbf{C}=\left(\left[\mathbf{I}\left(\boldsymbol{\theta}_{10}\right)^{-1}\right]_{11}\right)^{-1}$ Then, using 44,45 and the result of the problem 5.10 we have

$$
T_{w}=n\left(\hat{\boldsymbol{\theta}}_{1}-\boldsymbol{\theta}_{10}\right)^{\top}\left(\left[\mathbf{I}(\hat{\boldsymbol{\theta}})^{-1}\right]_{11}\right)^{-1}\left(\hat{\boldsymbol{\theta}}_{1}-\boldsymbol{\theta}_{10}\right) \xrightarrow{d} \mathbf{Y}^{\top}\left(\left[\mathbf{I}\left(\boldsymbol{\theta}_{10}\right)^{-1}\right]_{11}\right)^{-1} \mathbf{Y}
$$

where \mathbf{Y} follows $\mathrm{N}\left(\mathbf{d},\left[\mathbf{I}\left(\boldsymbol{\theta}_{10}\right)^{-1}\right]_{11}\right)$. So, all we have to find the distribution of $\mathbf{Y}^{\top}\left(\left[\mathbf{I}\left(\boldsymbol{\theta}_{10}\right)^{-1}\right]_{11}\right)^{-1} \mathbf{Y}$.
Using theorem 5.11 of the text book, we can say that $\mathbf{Y}^{\top}\left(\left[\mathbf{I}\left(\boldsymbol{\theta}_{10}\right)^{-1}\right]_{11}\right)^{-1} \mathbf{Y}$ follows a non-central chisquared distribution with non-centrality parameter $\lambda=\mathbf{d}^{\top}\left(\left[\mathbf{I}\left(\boldsymbol{\theta}_{10}\right)^{-1}\right]_{11}\right)^{-1} \mathbf{d}$ and r degrees of freedom, because $\mathbf{C}\left[\mathbf{I}\left(\boldsymbol{\theta}_{10}\right)^{-1}\right]_{11}=\mathbf{I}_{r}$ is an idempotent matrix of rank r. This completes the proof that $T_{w} \sim \chi_{r}^{2}(\lambda)$ under the Pitman alternatives.

Problem 6.2

1. The CDF is given by

$$
\begin{aligned}
F(x, \sigma) & =\int_{0}^{x} f(y, \sigma) d y \\
& =\int_{0}^{x} \frac{2 y}{\sigma^{2}} \exp \left(-\frac{y^{2}}{\sigma^{2}}\right) d y \\
& =\int_{0}^{\frac{x^{2}}{\sigma^{2}}} \exp (-u) d u \quad \quad\left[\text { change of variable: } u=\frac{y^{2}}{\sigma^{2}} \Longrightarrow d u=\frac{2 y}{\sigma^{2}} d y\right] \\
& =1-\exp \left(-\frac{x^{2}}{\sigma^{2}}\right)
\end{aligned}
$$

So, the CDF is given by

$$
F(y, \sigma)= \begin{cases}0 & \text { if } y<0 \\ 1-\exp \left(-\frac{y^{2}}{\sigma^{2}}\right) & \text { if } y>0\end{cases}
$$

Now, $\sigma_{1} \neq \sigma_{2}$ implies $\exp \left(-\frac{y^{2}}{\sigma_{1}^{2}}\right) \neq \exp \left(-\frac{y^{2}}{\sigma_{2}^{2}}\right) \quad \forall x$, which implies $F\left(y, \sigma_{1}\right) \neq F\left(y, \sigma_{2}\right)$.
2. From the above expression of the distribution function, it is clear that the CDF of Y does not depend on σ.
3. The log-likelihood based on one observation is given by

$$
\ell(y ; \sigma)=-2 \log \sigma-\frac{y^{2}}{\sigma^{2}}
$$

Then, the three derivatives of the log-likelihood is given by

$$
\begin{aligned}
\ell^{\prime}(y ; \sigma) & =-\frac{2}{\sigma}+\frac{2 y^{2}}{\sigma^{3}} \\
\ell^{\prime \prime}(y ; \sigma) & =\frac{2}{\sigma^{2}}-\frac{6 y^{2}}{\sigma^{4}} \\
\ell^{\prime \prime \prime}(y ; \sigma) & =-\frac{4}{\sigma^{3}}+\frac{24 y^{2}}{\sigma^{5}}
\end{aligned}
$$

We can see that $l(y ; \sigma)$ is infinitely differentiable within the support of Y.
4. To bound the third derivative observe that

$$
\left|\ell^{\prime \prime \prime}(y ; \sigma)\right|=\left|-\frac{4}{\sigma^{3}}+\frac{24 y^{2}}{\sigma^{5}}\right| \leq \frac{4}{\sigma^{3}}+\frac{24 y^{2}}{\sigma^{5}}=g(y)
$$

where, $E(g(y))<\infty$ because

$$
\begin{aligned}
E\left(Y^{2 k}\right) & =\int_{0}^{\infty} \frac{2 y^{2 k+1}}{\sigma^{2}} \exp \left(-\frac{y^{2}}{\sigma^{2}}\right) d y \\
& =\int_{0}^{\infty} \sigma^{2 k} u^{k} \exp (-u) d u \quad\left[\text { change of variable: } u=\frac{y^{2}}{\sigma^{2}} \Longrightarrow d u=\frac{2 y}{\sigma^{2}} d y\right] \\
& =\sigma^{2 k} k!<\infty \quad \forall k
\end{aligned}
$$

5. The expectation of the score function is given by

$$
\begin{aligned}
E\left(\ell^{\prime}(y ; \sigma)\right) & =-\frac{2}{\sigma}+\frac{2 E\left(y^{2}\right)}{\sigma^{3}} \\
& =-\frac{2}{\sigma}+\frac{2 \sigma^{2}}{\sigma^{3}} \\
& =0
\end{aligned}
$$

Fisher information matrix is

$$
\begin{aligned}
E\left(\ell^{\prime}(y ; \sigma)\right)^{2} & =E\left[-\frac{2}{\sigma}+\frac{2 y^{2}}{\sigma^{3}}\right]^{2} \\
& =\frac{4}{\sigma^{2}}-\frac{8}{\sigma^{4}} E\left(y^{2}\right)+\frac{4}{\sigma^{6}} E\left(y^{4}\right) \\
& =\frac{4}{\sigma^{2}}-\frac{8}{\sigma^{4}} \sigma^{2}+\frac{4}{\sigma^{6}} 2 \sigma^{4} \\
& =\frac{4}{\sigma^{2}}
\end{aligned}
$$

On the other hand,

$$
E\left(-\ell^{\prime \prime}(y ; \sigma)\right)=-\frac{2}{\sigma^{2}}+\frac{6}{\sigma^{4}} E\left(y^{2}\right)=\frac{4}{\sigma^{2}}
$$

This implies that all the five conditions for the asymptotic normality of MLE is satisfied.

